AI应用开发-python对MySQL数据的常见使用

AI应用开发相关目录

本专栏包括AI应用开发相关内容分享,包括不限于AI算法部署实施细节、AI应用后端分析服务相关概念及开发技巧、AI应用后端应用服务相关概念及开发技巧、AI应用前端实现路径及开发技巧
适用于具备一定算法及Python使用基础的人群

  1. AI应用开发流程概述
  2. Visual Studio Code及Remote Development插件远程开发
  3. git开源项目的一些问题及镜像解决办法
  4. python实现UDP报文通信
  5. python实现日志生成及定期清理
  6. Linux终端命令Screen常见用法
  7. python实现redis数据存储
  8. python字符串转字典
  9. python实现文本向量化及文本相似度计算
  10. python对MySQL数据的常见使用

文章目录


一、MySQL数据库的安装与使用

安装

详见:

https://blog.csdn.net/weixin_39289696/article/details/128850498

概括为:

离线安装包下载(msi文件,几百MB),Service only,检测mv C++

2019插件是否安装并完成安装,一路next,配置port,密码验证方式(Authentication

Method)这一步很重要(第一个是强密码校验,mysql推荐使用最新的数据库和相关客户端,MySQL8换了加密插件,所以如果选第一种方式,很可能导致你的navicat等客户端连不上mysql8),设置密码,需要牢记,因为后面要用这个密码连接数据库,用户名为root,最终更改mysql名称(mysql、mysql80等),服务器文件权限(Server

File Permissions)

使用

使用Navicat可轻松实现对数据的链接、库操作(增删改)、表操作(增删改查)。

但AI应用开发往往需要基于以下三点需求需要对MySQL进行代码操作:

1.表层面的数据自动化处理

2.表层面的数据批量处理

3.python实现的算法与其他技术栈(C++QT、Java Web等)实现的系统数据交互

二、代码示例

存储数据

cpp 复制代码
def insert_mysql(word):
    mysql_path = os.path.join(os.getcwd(), "data", "mysql_df1500hdb_config.json")
    with open(mysql_path, 'r', encoding='utf-8') as f:
        mid_json = json.load(f)
    db = pymysql.connect(host=mid_json['host'],
                         port=mid_json['port'],
                         user=mid_json['user'],
                         password=mid_json['password'],
                         database=mid_json['database'])
    cursor = db.cursor()
    insert_code = "INSERT INTO df_his_weatherpv (name,value1,value2,value3,value4,value5,value6,evt_time) VALUES (%s,%s,%s,%s,%s,%s,%s,%s);"
    cursor.execute(insert_code, (
    word.get('name'), word.get('value1'), word.get('value2'), word.get('value3'), word.get('value4'),
    word.get('value5'), word.get('value6'), str(timestamp2time(word.get('time')))))
    # 保留操作
    db.commit()
    # 关闭连接
    db.close()

拿取数据

cpp 复制代码
# 为温度、湿度、气压三个无需vdm分解的数据
def get_feature(now_time_str, des_code):
    table_ls = get_dbtable(now_time_str)
    if len(table_ls) == 1:
        mysql_path = os.path.join(os.getcwd(), "data", "mysql_df1500hdb_config.json")
        with open(mysql_path, 'r', encoding='utf-8') as f:
            mid_json = json.load(f)
        db = pymysql.connect(host=mid_json['host'],
                             port=mid_json['port'],
                             user=mid_json['user'],
                             password=mid_json['password'],
                             database=mid_json['database'])
        cursor = db.cursor()

        sql_code = "SELECT *  FROM {table} WHERE name = '{des}' AND evt_time >= DATE_SUB('{time}', INTERVAL 2 DAY) AND evt_time < '{time}';".format(
            time=now_time_str,
            table=table_ls[0],
            des=des_code)
        cursor.execute(sql_code)
        data = pd.DataFrame(cursor.fetchall())
        # 关闭连接
        db.close()
        # print(data)
        data.columns = ['id', 'name', 'value', 'ect_time', 'status']
        data = data.sort_values('ect_time')
        times = data['ect_time'].tolist()
        values = data['value'].tolist()
        mdh_indexs_dict = generate_26_mdhs(extract_mdh(now_time_str))
        mdhs = [extract_mdh(i) for i in times]
        for i in range(len(mdhs)):
            try:
                mdh_indexs_dict[mdhs[i]].append(i)
            except:
                pass
        flag = 0
        out_ls = []
        for mdh_dict_v in mdh_indexs_dict.values():
            if mdh_dict_v != []:
                flag += 1
                out_ls.append(np.mean(values[min(mdh_dict_v):max(mdh_dict_v) + 1]))
            else:
                out_ls.append(None)
        if flag == 24:
            return out_ls
        elif flag == 23 or flag == 22:
            return deal_none(out_ls)
        else:
            return []
    else:
        mysql_path = os.path.join(os.getcwd(), "data", "mysql_df1500hdb_config.json")
        with open(mysql_path, 'r', encoding='utf-8') as f:
            mid_json = json.load(f)
        db = pymysql.connect(host=mid_json['host'],
                             port=mid_json['port'],
                             user=mid_json['user'],
                             password=mid_json['password'],
                             database=mid_json['database'])
        cursor = db.cursor()

        sql_code = "SELECT *  FROM {table} WHERE name = '{des}' AND  evt_time >= DATE_SUB('{time}', INTERVAL 2 DAY) AND evt_time < '{time}';".format(
            time=now_time_str,
            table=table_ls[0],
            des=des_code)
        cursor.execute(sql_code)
        data1 = pd.DataFrame(cursor.fetchall())
        sql_code = "SELECT *  FROM {table} WHERE name = '{des}' AND  evt_time >= DATE_SUB('{time}', INTERVAL 2 DAY) AND evt_time < '{time}';".format(
            time=now_time_str,
            table=table_ls[1],
            des=des_code)
        cursor.execute(sql_code)
        data2 = pd.DataFrame(cursor.fetchall())
        db.close()
        data = pd.concat([data1, data2], ignore_index=True)
        data.columns = ['id', 'name', 'value', 'ect_time', 'status']
        data = data.sort_values('ect_time')
        times = data['ect_time'].tolist()
        values = data['value'].tolist()
        mdh_indexs_dict = generate_26_mdhs(extract_mdh(now_time_str))
        mdhs = [extract_mdh(i) for i in times]
        for i in range(len(mdhs)):
            try:
                mdh_indexs_dict[mdhs[i]].append(i)
            except:
                pass
        flag = 0
        out_ls = []
        for mdh_dict_v in mdh_indexs_dict.values():
            if mdh_dict_v != []:
                flag += 1
                out_ls.append(np.mean(values[min(mdh_dict_v):max(mdh_dict_v) + 1]))
            else:
                out_ls.append(None)
        if flag == 24:
            return out_ls
        elif flag == 23 or flag == 22:
            return deal_none(out_ls)
        else:
            return []

删除、修改等操作与上述类似,即用即查即可


三、总结

完结,撒花!

相关推荐
aneasystone本尊5 分钟前
重温 Java 21 之虚拟线程
人工智能
geneculture6 分钟前
官学商大跨界 · 产学研大综合:融智学新范式应用体系
大数据·人工智能·物联网·数据挖掘·哲学与科学统一性·信息融智学
波诺波8 分钟前
环境管理器
linux·前端·python
这张生成的图像能检测吗10 分钟前
(综述)基于深度学习的制造业表面缺陷检测图像合成方法综述
人工智能·计算机视觉·图像生成·工业检测·计算机图像学
草莓熊Lotso11 分钟前
C++ 继承特殊场景解析:友元、静态成员与菱形继承的底层逻辑
服务器·开发语言·c++·人工智能·经验分享·笔记·1024程序员节
诸葛思颖12 分钟前
把本地 Python 项目用 Git 进行版本控制并推送到 GitHub
git·python·github
安如衫12 分钟前
【学习笔记更新中】Deeplearning.AI 大语言模型后训练:微调与强化学习导论
人工智能·llm·sft·后训练·deepseek
测试老哥16 分钟前
自动化测试用例的编写和管理
自动化测试·软件测试·python·功能测试·测试工具·职场和发展·测试用例
IT_陈寒23 分钟前
5个Python 3.12新特性让你的代码效率提升50%,第3个太实用了!
前端·人工智能·后端
周杰伦_Jay23 分钟前
【Python Web开源框架】Django/Flask/FastAPI/Tornado/Pyramid
前端·python·开源