Flink并行度

1、Task

flink中每个算子就是一个Task,比如flatMap、map、sum是一个Task。

2、SubTask

算子有几个并行度SubTask的数量就是几,比如

3、算子并行度

算子并行度指的是每个算子的并行度,可用env.setParallelism(1);设置所有算子的并行度,也可以对每个算子单独设置,通过降数据流划分为多个并行的算子实例(SubTask)可实现数据的并行处理。

一个Job的并行度是算子并行度的最大值,比如一个Job中有map算子并行度是2、filter算子并行度是4,则任务并行度就是4。

总结:Flink中,每一个算子都可以成为一个独立任务(task)。

相关推荐
YangYang9YangYan1 小时前
2026高职大数据与会计专业学数据分析的技术价值分析
大数据·数据挖掘·数据分析
AI智能探索者6 小时前
揭秘大数据领域特征工程的核心要点
大数据·ai
做cv的小昊7 小时前
【TJU】信息检索与分析课程笔记和练习(8)(9)发现系统和全文获取、专利与知识产权基本知识
大数据·笔记·学习·全文检索·信息检索
AC赳赳老秦7 小时前
DeepSeek 私有化部署避坑指南:敏感数据本地化处理与合规性检测详解
大数据·开发语言·数据库·人工智能·自动化·php·deepseek
C7211BA9 小时前
通义灵码和Qoder的差异
大数据·人工智能
三不原则9 小时前
银行 AIOps 实践拆解:金融级故障自愈体系如何搭建
大数据·运维
大厂技术总监下海11 小时前
数据湖加速、实时数仓、统一查询层:Apache Doris 如何成为现代数据架构的“高性能中枢”?
大数据·数据库·算法·apache
2501_9418824813 小时前
AI系统工程化架构与大模型部署实践分享
flink
新诺韦尔API14 小时前
手机三要素验证不通过的原因?
大数据·智能手机·api
成长之路51414 小时前
【数据集】分地市全社会用电量统计数据(2004-2022年)
大数据