GESP5级T1真题 [202309] 因数分解——O(sqrt(n))的时间复杂度,值得一看

描述

每个正整数都可以分解成素数的乘积,例如:6=2*3、20=22 *5

现在,给定一个正整数N,请按要求输出它的因数分解式。

输入描述

输入第一行,包含一个正整数N。约定2<=N<=10^12

输出描述

输出一行,为N的因数分解式。要求按质因数由小到大排列,乘号用星号*表示,且左右各空一格。当且仅当一个素数出现多次时,将它们合并为指数形式,用上箭头^表示,且左右不空格。

用例输入 1

复制代码
6

用例输出 1

复制代码
2 * 3

用例输入 2

复制代码
20

用例输出 2

复制代码
2^2 * 5

用例输入 3

复制代码
23

用例输出 3

复制代码
23

来源

GESP 五级

这道题就算用O(n)的方法也过不了,所以要用O(sqrt(n)),这道题的关键就是在这里。

众所周知,i*i<=n就是sqrt(n)的时间复杂度,那我们就要在其基础上写代码

ACcode

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;

long long n;
bool flag=false,f2;
int main() {
	cin>>n;
	for (int i=2;i*i<=n;i++){
		if (n%i==0){
			f2=1;
			int cnt=0;
			while (n%i==0) n/=i, cnt++;//O(sqrt(n))+O(log2n)=O(sqrt(n))
			if (flag==false){
				flag=true;
			}else cout<<" * ";
			if (cnt>1){
				cout<<i<<"^"<<cnt;
			}else cout<<i;
		}
	}
	if(f2==0){
		cout<<n;
	}else if(n!=1)cout<<" * "<<n;
	return 0;
}

感谢王大佬提供思路

看了这么久,作者也写了这么久,能不能点一个赞,在收藏一下呢?最好的话在点个关注吧

谢谢啦!

相关推荐
熙xi.16 分钟前
数据结构 -- 哈希表和内核链表
数据结构·算法·散列表
Ghost-Face28 分钟前
并查集提高——种类并查集(反集)
算法
董董灿是个攻城狮1 小时前
5分钟搞懂大模型微调的原始能力退化问题
算法
Incredibuild2 小时前
DevSecOps 集成 CI/CD Pipeline:实用指南
c++·ci/cd·devsecops
君鼎5 小时前
More Effective C++ 条款01:仔细区别 pointers 和 references
c++
艾醒5 小时前
大模型面试题剖析:大模型微调与训练硬件成本计算
人工智能·后端·算法
啊嘞嘞?6 小时前
力扣(滑动窗口最大值)
算法·leetcode·职场和发展
快递鸟6 小时前
ISV系统开发中物流接口的第三方模块对接:技术选型与集成实践
算法
墨染点香6 小时前
LeetCode 刷题【53. 最大子数组和】
数据结构·算法·leetcode
2501_924879266 小时前
客流特征识别误报率↓76%!陌讯多模态时序融合算法在智慧零售的实战解析
大数据·人工智能·算法·目标检测·计算机视觉·视觉检测·零售