GESP5级T1真题 [202309] 因数分解——O(sqrt(n))的时间复杂度,值得一看

描述

每个正整数都可以分解成素数的乘积,例如:6=2*3、20=22 *5

现在,给定一个正整数N,请按要求输出它的因数分解式。

输入描述

输入第一行,包含一个正整数N。约定2<=N<=10^12

输出描述

输出一行,为N的因数分解式。要求按质因数由小到大排列,乘号用星号*表示,且左右各空一格。当且仅当一个素数出现多次时,将它们合并为指数形式,用上箭头^表示,且左右不空格。

用例输入 1

复制代码
6

用例输出 1

复制代码
2 * 3

用例输入 2

复制代码
20

用例输出 2

复制代码
2^2 * 5

用例输入 3

复制代码
23

用例输出 3

复制代码
23

来源

GESP 五级

这道题就算用O(n)的方法也过不了,所以要用O(sqrt(n)),这道题的关键就是在这里。

众所周知,i*i<=n就是sqrt(n)的时间复杂度,那我们就要在其基础上写代码

ACcode

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;

long long n;
bool flag=false,f2;
int main() {
	cin>>n;
	for (int i=2;i*i<=n;i++){
		if (n%i==0){
			f2=1;
			int cnt=0;
			while (n%i==0) n/=i, cnt++;//O(sqrt(n))+O(log2n)=O(sqrt(n))
			if (flag==false){
				flag=true;
			}else cout<<" * ";
			if (cnt>1){
				cout<<i<<"^"<<cnt;
			}else cout<<i;
		}
	}
	if(f2==0){
		cout<<n;
	}else if(n!=1)cout<<" * "<<n;
	return 0;
}

感谢王大佬提供思路

看了这么久,作者也写了这么久,能不能点一个赞,在收藏一下呢?最好的话在点个关注吧

谢谢啦!

相关推荐
Hunter_pcx27 分钟前
[C++技能提升]插件模式
开发语言·c++
左手の明天1 小时前
【C/C++】C++中使用vector存储并遍历数据
c语言·开发语言·c++
PaLu-LI1 小时前
ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
c++·人工智能·学习·线性代数·ubuntu·计算机视觉·矩阵
呆呆珝1 小时前
RKNN_C++版本-YOLOV5
c++·人工智能·嵌入式硬件·yolo
迪小莫学AI2 小时前
【力扣每日一题】LeetCode 2412: 完成所有交易的初始最少钱数
算法·leetcode·职场和发展
c++初学者ABC2 小时前
蓝桥杯LQ1044 求完数
c++·算法·lq蓝桥杯
.zhy.3 小时前
《挑战程序设计竞赛2 算法和数据结构》第二章实现
java·数据结构·算法
Catherinemin3 小时前
剑指Offer|LCR 045.找树左下角的值
javascript·算法
_GR3 小时前
2013年蓝桥杯第四届C&C++大学B组真题及代码
c语言·数据结构·c++·算法·蓝桥杯
记得早睡~3 小时前
leetcode28-找出字符串中第一个匹配的下标
数据结构·算法·leetcode