【LeetCode 热题100】网格路径类 DP 系列题:不同路径 & 最小路径和(力扣62 / 64 )(Go语言版)

🧭 网格路径类 DP 系列题:不同路径 & 最小路径和(LeetCode 62 / 64)

  • 🧮 62. 不同路径(计算路径总数)
  • 💰 64. 最小路径和(求路径最小代价)

🧮 62. 不同路径(Unique Paths)

📌 题目描述

一个机器人位于一个 m x n 网格左上角,只能向下或向右移动,每次一步。问有多少条不同路径可以走到右下角?


🧠 解题思路

这是一道经典的二维动态规划问题。

✅ 状态定义

dp[i][j] 表示走到第 i 行第 j 列的路径数量。

🔁 状态转移

机器人只能从上方或左方到达 (i,j)

go 复制代码
dp[i][j] = dp[i-1][j] + dp[i][j-1]
🎯 初始条件
  • 第一行 & 第一列都只有一条路径可达。

✅ Go 实现(二维 DP)

go 复制代码
func uniquePaths(m int, n int) int {
    dp := make([][]int, m)
    for i := range dp {
        dp[i] = make([]int, n)
        dp[i][0] = 1
    }
    for j := 0; j < n; j++ {
        dp[0][j] = 1
    }

    for i := 1; i < m; i++ {
        for j := 1; j < n; j++ {
            dp[i][j] = dp[i-1][j] + dp[i][j-1]
        }
    }
    return dp[m-1][n-1]
}
💡 空间优化

由于每次只依赖上一行和当前行,可以用一维数组滚动更新:

go 复制代码
func uniquePaths(m int, n int) int {
    dp := make([]int, n)
    for i := range dp {
        dp[i] = 1
    }

    for i := 1; i < m; i++ {
        for j := 1; j < n; j++ {
            dp[j] += dp[j-1]
        }
    }
    return dp[n-1]
}

💰 64. 最小路径和(Minimum Path Sum)

📌 题目描述

给定一个 m x n 的网格,每个单元格内有一个非负整数,求从左上角到右下角一条路径,使得路径上数字总和最小。


🧠 解题思路

与上一题相似,不过这题是求最小路径代价

✅ 状态定义

dp[i][j] 表示走到 (i,j) 所需的最小路径和。

🔁 状态转移

只能从上方或左方来:

go 复制代码
dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]

✅ Go 实现

go 复制代码
func minPathSum(grid [][]int) int {
    m, n := len(grid), len(grid[0])
    dp := make([][]int, m)
    for i := range dp {
        dp[i] = make([]int, n)
    }

    dp[0][0] = grid[0][0]
    for i := 1; i < m; i++ {
        dp[i][0] = dp[i-1][0] + grid[i][0]
    }
    for j := 1; j < n; j++ {
        dp[0][j] = dp[0][j-1] + grid[0][j]
    }

    for i := 1; i < m; i++ {
        for j := 1; j < n; j++ {
            dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]
        }
    }
    return dp[m-1][n-1]
}

func min(a, b int) int {
    if a < b {
        return a
    }
    return b
}

🔚 总结与对比

题目 目标 状态定义 转移逻辑 可否空间优化
62. 不同路径 统计路径条数 dp[i][j] 为到达 (i,j) 的路径数 dp[i-1][j] + dp[i][j-1] ✅ 可用一维数组优化
64. 最小路径和 求最小路径值 dp[i][j] 为到达 (i,j) 的最小和 min(dp[i-1][j], dp[i][j-1]) + grid[i][j] ✅ 可用一维数组优化

✏️ 思维延伸

如果想更进一步,可以尝试:

    1. 不同路径 II(加上障碍)
    1. 三角形最小路径和(从底向上 DP)
    1. 下降路径最小和(支持斜着走)

这类问题的关键在于:

✅ 明确"状态"

🔁 写出"转移"

🎯 找准"边界"


相关推荐
能工智人小辰23 分钟前
Codeforces Round 509 (Div. 2) C. Coffee Break
c语言·c++·算法
kingmax5421200824 分钟前
CCF GESP202503 Grade4-B4263 [GESP202503 四级] 荒地开垦
数据结构·算法
岁忧29 分钟前
LeetCode 高频 SQL 50 题(基础版)之 【高级字符串函数 / 正则表达式 / 子句】· 上
sql·算法·leetcode
eachin_z1 小时前
力扣刷题(第四十九天)
算法·leetcode·职场和发展
闻缺陷则喜何志丹1 小时前
【强连通分量 缩点 拓扑排序】P3387 【模板】缩点|普及+
c++·算法·拓扑排序·洛谷·强连通分量·缩点
机器学习之心2 小时前
机器学习用于算法交易(Matlab实现)
算法·机器学习·matlab
AL流云。2 小时前
【优选算法】C++滑动窗口
数据结构·c++·算法
qq_429879673 小时前
省略号和可变参数模板
开发语言·c++·算法
Neil今天也要学习4 小时前
永磁同步电机参数辨识算法--IPMSM拓展卡尔曼滤波全参数辨识
单片机·嵌入式硬件·算法