本文涉及知识点
C++图论 强连通分量 拓扑排序
P3387 【模板】缩点
题目描述
给定一个 n n n 个点 m m m 条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大。你只需要求出这个权值和。
允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次。
输入格式
第一行两个正整数 n , m n,m n,m。
第二行 n n n 个整数,其中第 i i i 个数 a i a_i ai 表示点 i i i 的点权。
第三至 m + 2 m+2 m+2 行,每行两个整数 u , v u,v u,v,表示一条 u → v u\rightarrow v u→v 的有向边。
输出格式
共一行,最大的点权之和。
输入输出样例 #1
输入 #1
2 2
1 1
1 2
2 1
输出 #1
2
说明/提示
对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 10 4 1\le n \le 10^4 1≤n≤104, 1 ≤ m ≤ 10 5 1\le m \le 10^5 1≤m≤105, 0 ≤ a i ≤ 10 3 0\le a_i\le 10^3 0≤ai≤103。
- 2024-11-1 添加了 hack 数据;
P3387 【模板】缩点
强连通分量 缩点 拓扑排序
强联通分量缩成一点,点权等于强连通分量所有节点权之和。
缩点无环,按拓扑序处理各节点u,可以保证无后效性。
v是u的任意临接点 dp[u] = u的权值 + max(dp[v])
代码
核心代码
cpp
#include <iostream>
#include <sstream>
#include <vector>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<string>
#include<algorithm>
#include<functional>
#include<queue>
#include <stack>
#include<iomanip>
#include<numeric>
#include <math.h>
#include <climits>
#include<assert.h>
#include<cstring>
#include<list>
#include<array>
#include <bitset>
using namespace std;
template<class T1, class T2>
std::istream& operator >> (std::istream& in, pair<T1, T2>& pr) {
in >> pr.first >> pr.second;
return in;
}
template<class T1, class T2, class T3 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3>& t) {
in >> get<0>(t) >> get<1>(t) >> get<2>(t);
return in;
}
template<class T1, class T2, class T3, class T4 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4>& t) {
in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t);
return in;
}
template<class T1, class T2, class T3, class T4, class T5, class T6, class T7 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4,T5,T6,T7>& t) {
in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t) >> get<4>(t) >> get<5>(t) >> get<6>(t);
return in;
}
template<class T = int>
vector<T> Read() {
int n;
cin >> n;
vector<T> ret(n);
for (int i = 0; i < n; i++) {
cin >> ret[i];
}
return ret;
}
template<class T = int>
vector<T> ReadNotNum() {
vector<T> ret;
T tmp;
while (cin >> tmp) {
ret.emplace_back(tmp);
if ('\n' == cin.get()) { break; }
}
return ret;
}
template<class T = int>
vector<T> Read(int n) {
vector<T> ret(n);
for (int i = 0; i < n; i++) {
cin >> ret[i];
}
return ret;
}
template<int N = 1'000'000>
class COutBuff
{
public:
COutBuff() {
m_p = puffer;
}
template<class T>
void write(T x) {
int num[28], sp = 0;
if (x < 0)
*m_p++ = '-', x = -x;
if (!x)
*m_p++ = 48;
while (x)
num[++sp] = x % 10, x /= 10;
while (sp)
*m_p++ = num[sp--] + 48;
AuotToFile();
}
void writestr(const char* sz) {
strcpy(m_p, sz);
m_p += strlen(sz);
AuotToFile();
}
inline void write(char ch)
{
*m_p++ = ch;
AuotToFile();
}
inline void ToFile() {
fwrite(puffer, 1, m_p - puffer, stdout);
m_p = puffer;
}
~COutBuff() {
ToFile();
}
private:
inline void AuotToFile() {
if (m_p - puffer > N - 100) {
ToFile();
}
}
char puffer[N], * m_p;
};
template<int N = 1'000'000>
class CInBuff
{
public:
inline CInBuff() {}
inline CInBuff<N>& operator>>(char& ch) {
FileToBuf();
while (('\r' == *S) || ('\n' == *S) || (' ' == *S)) { S++; }//忽略空格和回车
ch = *S++;
return *this;
}
inline CInBuff<N>& operator>>(int& val) {
FileToBuf();
int x(0), f(0);
while (!isdigit(*S))
f |= (*S++ == '-');
while (isdigit(*S))
x = (x << 1) + (x << 3) + (*S++ ^ 48);
val = f ? -x : x; S++;//忽略空格换行
return *this;
}
inline CInBuff& operator>>(long long& val) {
FileToBuf();
long long x(0); int f(0);
while (!isdigit(*S))
f |= (*S++ == '-');
while (isdigit(*S))
x = (x << 1) + (x << 3) + (*S++ ^ 48);
val = f ? -x : x; S++;//忽略空格换行
return *this;
}
template<class T1, class T2>
inline CInBuff& operator>>(pair<T1, T2>& val) {
*this >> val.first >> val.second;
return *this;
}
template<class T1, class T2, class T3>
inline CInBuff& operator>>(tuple<T1, T2, T3>& val) {
*this >> get<0>(val) >> get<1>(val) >> get<2>(val);
return *this;
}
template<class T1, class T2, class T3, class T4>
inline CInBuff& operator>>(tuple<T1, T2, T3, T4>& val) {
*this >> get<0>(val) >> get<1>(val) >> get<2>(val) >> get<3>(val);
return *this;
}
template<class T = int>
inline CInBuff& operator>>(vector<T>& val) {
int n;
*this >> n;
val.resize(n);
for (int i = 0; i < n; i++) {
*this >> val[i];
}
return *this;
}
template<class T = int>
vector<T> Read(int n) {
vector<T> ret(n);
for (int i = 0; i < n; i++) {
*this >> ret[i];
}
return ret;
}
template<class T = int>
vector<T> Read() {
vector<T> ret;
*this >> ret;
return ret;
}
private:
inline void FileToBuf() {
const int canRead = m_iWritePos - (S - buffer);
if (canRead >= 100) { return; }
if (m_bFinish) { return; }
for (int i = 0; i < canRead; i++)
{
buffer[i] = S[i];//memcpy出错
}
m_iWritePos = canRead;
buffer[m_iWritePos] = 0;
S = buffer;
int readCnt = fread(buffer + m_iWritePos, 1, N - m_iWritePos, stdin);
if (readCnt <= 0) { m_bFinish = true; return; }
m_iWritePos += readCnt;
buffer[m_iWritePos] = 0;
S = buffer;
}
int m_iWritePos = 0; bool m_bFinish = false;
char buffer[N + 10], * S = buffer;
};
class CNeiBo
{
public:
static vector<vector<int>> Two(int n, const vector<pair<int, int>>& edges, bool bDirect, int iBase = 0)
{
vector<vector<int>> vNeiBo(n);
for (const auto& [i1, i2] : edges)
{
vNeiBo[i1 - iBase].emplace_back(i2 - iBase);
if (!bDirect)
{
vNeiBo[i2 - iBase].emplace_back(i1 - iBase);
}
}
return vNeiBo;
}
static vector<vector<int>> Two(int n, const vector<vector<int>>& edges, bool bDirect, int iBase = 0)
{
vector<vector<int>> vNeiBo(n);
for (const auto& v : edges)
{
vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);
if (!bDirect)
{
vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);
}
}
return vNeiBo;
}
static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)
{
vector<vector<std::pair<int, int>>> vNeiBo(n);
for (const auto& v : edges)
{
vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);
if (!bDirect)
{
vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);
}
}
return vNeiBo;
}
static vector<vector<std::pair<int, int>>> Three(int n, const vector<tuple<int, int, int>>& edges, bool bDirect, int iBase = 0)
{
vector<vector<std::pair<int, int>>> vNeiBo(n);
for (const auto& [u, v, w] : edges)
{
vNeiBo[u - iBase].emplace_back(v - iBase, w);
if (!bDirect)
{
vNeiBo[v - iBase].emplace_back(u - iBase, w);
}
}
return vNeiBo;
}
static vector<vector<int>> Mat(vector<vector<int>>& neiBoMat)
{
vector<vector<int>> neiBo(neiBoMat.size());
for (int i = 0; i < neiBoMat.size(); i++)
{
for (int j = i + 1; j < neiBoMat.size(); j++)
{
if (neiBoMat[i][j])
{
neiBo[i].emplace_back(j);
neiBo[j].emplace_back(i);
}
}
}
return neiBo;
}
};
class CBFSLeve {
public:
static vector<int> Leve(const vector<vector<int>>& neiBo, vector<int> start) {
vector<int> leves(neiBo.size(), -1);
for (const auto& s : start) {
leves[s] = 0;
}
for (int i = 0; i < start.size(); i++) {
for (const auto& next : neiBo[start[i]]) {
if (-1 != leves[next]) { continue; }
leves[next] = leves[start[i]] + 1;
start.emplace_back(next);
}
}
return leves;
}
template<class NextFun>
static vector<int> Leve(int N, NextFun nextFun, vector<int> start) {
vector<int> leves(N, -1);
for (const auto& s : start) {
leves[s] = 0;
}
for (int i = 0; i < start.size(); i++) {
auto nexts = nextFun(start[i]);
for (const auto& next : nexts) {
if (-1 != leves[next]) { continue; }
leves[next] = leves[start[i]] + 1;
start.emplace_back(next);
}
}
return leves;
}
static vector<vector<int>> LeveNodes(const vector<int>& leves) {
const int iMaxLeve = *max_element(leves.begin(), leves.end());
vector<vector<int>> ret(iMaxLeve + 1);
for (int i = 0; i < leves.size(); i++) {
ret[leves[i]].emplace_back(i);
}
return ret;
};
static vector<int> LeveSort(const vector<int>& leves) {
const int iMaxLeve = *max_element(leves.begin(), leves.end());
vector<vector<int>> leveNodes(iMaxLeve + 1);
for (int i = 0; i < leves.size(); i++) {
leveNodes[leves[i]].emplace_back(i);
}
vector<int> ret;
for (const auto& v : leveNodes) {
ret.insert(ret.end(), v.begin(), v.end());
}
return ret;
};
};
class CSCCTarjan {
public:
CSCCTarjan(vector<vector<int>>& neiBo) :m_neiBo(neiBo) {
const int N = neiBo.size();
m_vTime.assign(N, -1);
m_vBack.assign(N, -1);
m_vIsStack.assign(N, false);
for (int i = 0; i < N; i++) {
DFS(i);
}
}
void InitPtNew() {
m_ptNew.resize(m_neiBo.size());
iota(m_ptNew.begin(), m_ptNew.end(), 0);
for (auto& v : m_sccs) {
nth_element(v.begin(), v.begin(), v.end());
m_v0.emplace_back(v[0]);
for (int i = 1; i < v.size(); i++) {
m_ptNew[v[i]] = v[0];
}
}
}
vector<vector<int>> GetNewNeiBo() {
vector<vector<int>> neiBo(m_neiBo.size());
for (int i = 0; i < neiBo.size(); i++) {
const int n1 = m_ptNew[i];
for (const auto& next : m_neiBo[i]) {
const int n2 = m_ptNew[next];
if (n1 == n2) { continue; }//自环
neiBo[n1].emplace_back(n2);
}
}
return neiBo;
}
vector<vector<int>> m_sccs;
vector<int> m_v0, m_ptNew;
protected:
void DFS(int cur) {
if (-1 != m_vTime[cur]) { return; }
m_vTime[cur] = m_vBack[cur] = m_iTimes++;
m_vIsStack[cur] = true;
m_sta.emplace(cur);
for (const auto& next : m_neiBo[cur]) {
if (-1 == m_vTime[next]) {
DFS(next);
m_vBack[cur] = min(m_vBack[cur], m_vBack[next]);
}
else if (m_vIsStack[next]) {
m_vBack[cur] = min(m_vBack[cur], m_vTime[next]);
}
}
if (m_vTime[cur] != m_vBack[cur]) { return; }
vector<int> scc;
while (m_sta.size())
{
auto u = m_sta.top(); m_sta.pop();
scc.emplace_back(u);
m_vIsStack[u] = false;
if (cur == u) { break; }
}
m_sccs.emplace_back(scc);
}
vector<vector<int>>& m_neiBo;
int m_iTimes = 0;
vector<int> m_vTime, m_vBack;
vector<bool> m_vIsStack;
stack<int> m_sta;
};
class CDGTopSort
{
public:
template <class T = vector<int> >
CDGTopSort(const vector<T>& vNeiBo) :m_vDeg(vNeiBo.size()), m_neiBo(vNeiBo) {
const int N = vNeiBo.size();
m_backNeiBo.resize(N);
for (int cur = 0; cur < N; cur++)
{
m_vDeg[cur] = vNeiBo[cur].size();
for (const auto& next : vNeiBo[cur])
{
m_backNeiBo[next].emplace_back(cur);
}
}
}
void Init() {
auto Add = [&](int i) {
if (0 != m_vDeg[i]) { return; }
m_que.emplace(i);
};
for (int i = 0; i < m_vDeg.size(); i++)
{
Add(i);
}
while (m_que.size())
{
const int cur = m_que.front(); m_que.pop();
if (!OnDo(cur)) { continue; }
for (const auto& next : m_backNeiBo[cur])
{
m_vDeg[next]--;
Add(next);
}
};
}
queue<int> m_que;
vector<int> m_vDeg;
vector<int> m_vSort;
protected:
const vector<vector<int>>& m_neiBo;
vector<vector<int>> m_backNeiBo;
virtual bool OnDo(int cur) {
m_vSort.emplace_back(cur);
return true;
};
};
class Solution {
public:
int Ans(vector<int>& ws, vector<pair<int, int>>& edge) {
const int N = ws.size();
auto neiBo = CNeiBo::Two(N, edge, true, 1);
CSCCTarjan scc(neiBo);
scc.InitPtNew();
for (auto& v : scc.m_sccs) {
for (int i = 1; i < v.size(); i++) {
ws[v[0]] += ws[v[i]];
}
}
auto neiBo1 = scc.GetNewNeiBo();
CDGTopSort ts(neiBo1);
ts.Init();
vector<int> ans = ws;
for (const auto& cur : ts.m_vSort) {
for (const auto& child : neiBo1[cur])
{
ans[cur] = max(ans[cur], ans[child] + ws[cur]);
}
}
const int iMax = *max_element(ans.begin(), ans.end());
return iMax;
}
};
int main() {
#ifdef _DEBUG
freopen("a.in", "r", stdin);
#endif // DEBUG
ios::sync_with_stdio(0); cin.tie(nullptr);
//CInBuff<> in; COutBuff<10'000'000> ob;
int N,M;
cin >> N >> M;
auto ws = Read<int>(N);
auto edge = Read<pair<int, int>>(M);
#ifdef _DEBUG
//printf("N=%d",n);
Out(ws, ",ws=");
Out(edge, ",edge=");
#endif // DEBUG
auto res = Solution().Ans(ws,edge);
cout << res << "\n";
return 0;
};
单元测试
cpp
vector<int> ws;
vector<pair<int, int>> edge;
TEST_METHOD(TestMethod01)
{
ws = { 1,1 }, edge = { {1,2},{2,1} };
auto res = Solution().Ans(ws,edge);
AssertEx(2, res);
}
TEST_METHOD(TestMethod02)
{
ws = { 970,369,910,889,470,106,658,659,916,964 }, edge = { {3,2},{3,6},{3,4},{9,5},{8,3
},{5,8},{9,1},{9,7},{9,8},{7,5},{3,7},{7,8},{1,7},{10,2},{1,10},{4,8},{2,6},{3,1},{3,5},{8,5} };
auto res = Solution().Ans(ws, edge);
AssertEx(6911, res);
}

扩展阅读
我想对大家说的话 |
---|
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。 |
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作 |
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注 |
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
失败+反思=成功 成功+反思=成功 |
视频课程
先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法 用**C++**实现。