决策树概览

决策树是一种常见的数据挖掘算法,它模仿人类决策过程来预测数据。它通过一系列的问题对数据进行分割,每个问题都对应数据集中的一个属性,根据属性的不同值将数据划分到不同的子集。这个过程就像是一棵树,根节点是初始节点,叶节点则表示最终的决策结果。

决策树的学习过程主要包括两个步骤:

  1. 树的增长(生长):在这个阶段,算法从根节点开始,根据当前节点的最大纯度(如信息增益、基尼不纯度等)选择最佳的属性进行分裂,一直分裂到叶节点,直到满足停止条件,如节点的纯度足够高,或者达到了预设的深度限制等。
  2. 剪枝 :为了避免过拟合,通常在生长完决策树后,需要对树进行剪枝。剪枝可以通过预剪枝(在决策树增长过程中就剪枝)或者后剪枝(先生长出完整的树,然后再剪枝)来进行。剪枝会减少树的复杂度,提高模型的泛化能力。
    决策树算法在分类和回归任务中都有应用。在分类任务中,决策树的每个叶节点通常会分配一个类别标签;而在回归任务中,叶节点则包含预测的数值。
    常见的决策树算法包括ID3、C4.5、CART等。ID3算法使用信息增益作为节点分裂的依据,而C4.5则使用增益率来选择属性,以避免数据集的噪声对树的学习产生过大影响。CART算法则是使用基尼不纯度作为分裂标准,并且它可以生成二叉树,也可以进一步生成回归树。
    决策树具有易于理解和解释的优点,因为它可以通过一系列规则来描述,也便于可视化。同时,它适用于各种类型的数据,包括分类和连续数据。但是,决策树也可能遇到过拟合问题,特别是在处理噪声数据或者数据特征多且有冗余时。因此,实际应用中常常需要通过正则化、剪枝等技术来缓解这一问题。
相关推荐
NAGNIP2 小时前
万字长文!回归模型最全讲解!
算法·面试
LawrenceLan2 小时前
Flutter 零基础入门(十一):空安全(Null Safety)基础
开发语言·flutter·dart
知乎的哥廷根数学学派3 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
且去填词3 小时前
DeepSeek :基于 Schema 推理与自愈机制的智能 ETL
数据仓库·人工智能·python·语言模型·etl·schema·deepseek
txinyu的博客3 小时前
解析业务层的key冲突问题
开发语言·c++·分布式
数字化转型20253 小时前
企业数字化架构集成能力建设
大数据·程序人生·机器学习
码不停蹄Zzz3 小时前
C语言第1章
c语言·开发语言
人工干智能3 小时前
OpenAI Assistants API 中 client.beta.threads.messages.create方法,兼谈一星*和两星**解包
python·llm
databook3 小时前
当条形图遇上极坐标:径向与圆形条形图的视觉革命
python·数据分析·数据可视化
行者963 小时前
Flutter跨平台开发在OpenHarmony上的评分组件实现与优化
开发语言·flutter·harmonyos·鸿蒙