欧拉计划第6题:Sum square difference(和的平方 平方的和)

欧拉计划简介,本系列希望以通俗易懂的语言、简洁的代码,带大家体会数学与编程结合的魅力。

Problem 6:Sum square difference

标签:和的平方、平方的和

原文:The sum of the squares of the first ten natural numbers is,

1 2 + 2 2 + ... + 1 0 2 = 385 1^2+2^2+\ldots +10^2=385 12+22+...+102=385

The square of the sum of the first ten natural numbers is,

( 1 + 2 + ... + 10 ) 2 = 5 5 2 = 3025 (1+2+\ldots+10)^2 = 55^2 = 3025 (1+2+...+10)2=552=3025

Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640 3025 − 385 = 2640 3025−385=2640.

Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.

翻译 :前十个自然数的 平方的和

1 2 + 2 2 + ... + 1 0 2 = 385 1^2+2^2+\ldots +10^2=385 12+22+...+102=385

前十个自然数的 和的平方

( 1 + 2 + ... + 10 ) 2 = 5 5 2 = 3025 (1+2+\ldots+10)^2 = 55^2 = 3025 (1+2+...+10)2=552=3025

因此,前十个自然数 和的平方平方的和 之差是 3025 − 385 = 2640 3025 − 385 = 2640 3025−385=2640。

求前一百个自然数 和的平方平方的和 之差。

枚举法题解:循环枚举一下。

枚举法代码

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;

int main() {
    int sum1 = 0, sum2 = 0;
    for (int i = 1; i <= 100; i++) {
        sum1 += i;
        sum2 += i * i;
    }
    // 和的平方、平方的和
    cout << sum1 * sum1 - sum2 << endl;
    return 0;
}

数学题解 :自然数的 和的平方 通项公式为 X = ( n ( n + 1 ) 2 ) 2 \large X=(\frac{n(n+1)}{2})^2 X=(2n(n+1))2

自然数的 平方的和 通项公式为 Y = n ( n + 1 ) ( 2 n + 1 ) 6 \large Y=\frac{n(n+1)(2n+1)}{6} Y=6n(n+1)(2n+1)

和的平方平方的和 差值公式为: X − Y = ( n ( n + 1 ) 2 ) 2 − n ( n + 1 ) ( 2 n + 1 ) 6 = n ( n − 1 ) ( n + 1 ) ( 3 n + 2 ) 12 X-Y=(\frac{n(n+1)}{2})^2-\frac{n(n+1)(2n+1)}{6}=\frac{n(n-1)(n+1)(3n+2)}{12} X−Y=(2n(n+1))2−6n(n+1)(2n+1)=12n(n−1)(n+1)(3n+2)

数学代码

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;

int main() {
    int n = 100;
    cout << n * (n-1) * (n+1) * (3*n+2) / 12;
    return 0;
}

"Project Euler exists to encourage, challenge, and develop the skills and enjoyment of anyone with an interest in the fascinating world of mathematics."

"欧拉计划的存在,是为了每个对数学感兴趣的人,鼓励他们,挑战他们,并最终培养他们的能力与乐趣。"

相关推荐
ajassi200013 小时前
开源 C++ QT Widget 开发(十五)多媒体--音频播放
linux·c++·qt·开源
焦耳加热13 小时前
阿德莱德大学Nat. Commun.:盐模板策略实现废弃塑料到单原子催化剂的高值转化,推动环境与能源催化应用
人工智能·算法·机器学习·能源·材料工程
wan5555cn14 小时前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
u60614 小时前
常用排序算法核心知识点梳理
算法·排序
Broken Arrows15 小时前
Linux学习——管理网络安全(二十一)
linux·学习·web安全
今天也要学习吖15 小时前
谷歌nano banana官方Prompt模板发布,解锁六大图像生成风格
人工智能·学习·ai·prompt·nano banana·谷歌ai
雁于飞15 小时前
vscode中使用git、githup的基操
笔记·git·vscode·学习·elasticsearch·gitee·github
鹅毛在路上了15 小时前
C++, ffmpeg, libavcodec-RTSP拉流,opencv实时预览
c++·opencv·ffmpeg
John_ToDebug16 小时前
定制 ResourceBundle 的实现与 DuiLib 思想在 Chromium 架构下的应用解析
c++·chrome·ui