告别os.path,拥抱pathlib

pathlib 模块是在Python3.4版本中首次被引入到标准库中的,作为一个可选模块。

Python3.6开始,内置的 open 函数以及 osshutilos.path 模块中的各种函数都可以正确地使用 pathlib.Path 对象了。

最初,pathlib给人的感觉只是os.path的一个不必要的面向对象版本,

不过,当你实际去了解pathlib之后,会发现pathlib实际上绝不是一个简单的面向对象版本,

而是实实在在的解决了os.path存在的一些问题。

1. os.path VS pathlib

1.1. 路径规范化

对于os.path来说,路径的分隔用正斜杆\)还是反斜杠/)需要自己根据操作系统来确定。

或者,每一个路径拼接的地方,都用os.path.join来连接。

而使用pathlib的话,直接用反斜杠/)即可,不用担心操作系统的不同。

比如:

python 复制代码
import os

# windows系统中测试

os.path.join("a/b", "c.txt")
# 运行结果 错误
# 'a/b\\c.txt'

os.path.join("a", "b", "c.txt")
# 运行结果 正确
# 'a\\b\\c.txt'

从代码可以看出,每一层文件夹都必须用join连接才能正确适应不同系统。

而在pathlib中,则不需要考虑这么多。

python 复制代码
from pathlib import Path

Path("a/b").joinpath("c.txt")
# WindowsPath('a/b/c.txt')

Path("a").joinpath("b").joinpath("c.txt")
# WindowsPath('a/b/c.txt')

使用pathlib,在windows或者linux中,统一使用反斜杠/)来分隔文件夹。

路径规范化之后的好处就是代码更加简洁。

比如:下面这个重命名文件的例子(a/b/c/d.csv => a/b/c.csv

python 复制代码
# os.path 方式
os.rename(os.path.join("a", "b", "c", "d.csv"), os.path.join("a", "b", "c.csv"))

# pathlib 方式
Path("a/b/c/d.csv").reanme("a/b/c.csv")

哪种方式更清晰简洁不言而喻。

1.2. 字符串和对象

为什么要用对象来表示路径?

先看下面3个字符串变量:

python 复制代码
student = '{"name": "databook", "score": "90"}'
graduate_date = "2023-07-01"
home_directory = '/home/databook'

这3个字符串其实代表不同的事物:一种是 JSON blob,一种是日期,一种是文件路径。

再看下面3个用对象表示的变量:

python 复制代码
from datetime import date
from pathlib import Path

student = {"name": "databook", "score": "90"}
graduate_date = date(2023, 7, 1)
home_directory = Path('/home/databook')

用字符串来表示变量确实简洁,但也导致每个变量失去了其本身的意义,

程序无法区分这个变量代表的是JSON,还是日期,还是一个路径,从而增加了程序的不确定性。

程序规模大了,或者复杂性提高了之后,存在很大的隐患。

os.pathpathlib就是这样的关系,os.path使用字符串表示路径,pathlib使用Path对象表示路径。

1.3. 读写文件

pathlib的路径对象(Path)可以直接读写文件,因此也能大大简化读写文件的代码。

不用pathlib的读写文件方式:

python 复制代码
import os

# 读取文件
fp = os.path.join("a", "b.txt")
with open(fp, "r") as f:
    f.read()

# 写入文件
with open(fp, "w") as f:
    f.write("hello")

使用pathlib的话:

python 复制代码
from pathlib import Path

# 读取文件
Path("a/b.txt").read_text()

# 写入文件
Path("a/b.txt").write_text("hello)

2. pathlib的性能

pathlib用面向对象的方式处理路径,难免让人觉得会比传统的方式慢很多,也就是存在性能问题。

那么,pathlib到底会比传统方式慢多少?通过下面的简单示例来看看。

传统方式:

python 复制代码
def a(d="D:/miniconda3/Lib/site-packages"):
    from os import getcwd, walk

    extension = ".py"
    count = 0
    for root, directories, filenames in walk(d):
        for filename in filenames:
            if filename.endswith(extension):
                count += 1
                
    print(f"{count} Python files found")

if __name__ == "__main__":
    import time

    t0 = time.time()
    a()
    t1 = time.time()
    print(t1 - t0)

# 运行结果:
7875 Python files found
0.31201744079589844

pathlib方式:

python 复制代码
def b(d="D:/miniconda3/Lib/site-packages"):
    from pathlib import Path

    extension = ".py"
    count = 0
    for filename in Path(d).rglob(f"*{extension}"):
        count += 1

    print(f"{count} Python files found")

if __name__ == "__main__":
    import time

    t0 = time.time()
    b()
    t1 = time.time()
    print(t1 - t0)

# 运行结果:
7875 Python files found
0.44898128509521484

读取的标准库中的文件,总共将近8000个文件,运行多次后,时间大概相差0.1秒 左右。
pathlib的性能确实略逊于传统方式,但是将近8000个文件,也只慢了0.1秒

如果不是大规模处理文件的话,还是用pathlib更好。

3. 总结

总的来说,与传统的 os.path 模块相比,pathlib 提供了一种更现代和面向对象的方式来处理文件路径。

它支持跨平台的文件路径操作,使得开发者可以更容易地编写可移植的代码。

此外,pathlib 还提供了链式调用的能力,使得代码更加简洁和易读。

因此,为了代码更加简洁、易读和可维护,推荐使用 pathlib 来替代传统的 os.path

相关推荐
nuclear201142 分钟前
使用Python 在Excel中创建和取消数据分组 - 详解
python·excel数据分组·创建excel分组·excel分类汇总·excel嵌套分组·excel大纲级别·取消excel分组
Lucky小小吴1 小时前
有关django、python版本、sqlite3版本冲突问题
python·django·sqlite
GIS 数据栈1 小时前
每日一书 《基于ArcGIS的Python编程秘笈》
开发语言·python·arcgis
爱分享的码瑞哥1 小时前
Python爬虫中的IP封禁问题及其解决方案
爬虫·python·tcp/ip
傻啦嘿哟3 小时前
如何使用 Python 开发一个简单的文本数据转换为 Excel 工具
开发语言·python·excel
B站计算机毕业设计超人3 小时前
计算机毕业设计SparkStreaming+Kafka旅游推荐系统 旅游景点客流量预测 旅游可视化 旅游大数据 Hive数据仓库 机器学习 深度学习
大数据·数据仓库·hadoop·python·kafka·课程设计·数据可视化
IT古董3 小时前
【人工智能】Python在机器学习与人工智能中的应用
开发语言·人工智能·python·机器学习
湫ccc3 小时前
《Python基础》之pip换国内镜像源
开发语言·python·pip
hakesashou3 小时前
Python中常用的函数介绍
java·网络·python
菜鸟的人工智能之路4 小时前
极坐标气泡图:医学数据分析的可视化新视角
python·数据分析·健康医疗