FPN(Feature Pyramid Network)

参考:

【目标检测】FPN(Feature Pyramid Network) - 知乎

Feature pyramid network是CVPR2017年的一篇文章,它在目标检测中融入了特征金字塔,提高了目标检测的准确率,尤其体现在小物体的检测上。

1. 动机(Motivation)

识别不同尺寸的物体是目标检测中的一个基本挑战,而特征金字塔一直是多尺度目标检测中的一个基本的组成部分,但是由于特征金字塔计算量大,会拖慢整个检测速度,所以大多数方法为了检测速度而尽可能的去避免使用特征金字塔,而是只使用高层的特征来进行预测。高层的特征虽然包含了丰富的语义信息,但是由于低分辨率,很难准确地保存物体的位置信息。与之相反,低层的特征虽然语义信息较少,但是由于分辨率高,就可以准确地包含物体位置信息。所以如果可以将低层的特征和高层的特征融合起来,就能得到一个识别和定位都准确的目标检测系统。所以本文就旨在设计出这样的一个结构来使得检测准确且快速。

虽然之前也有算法采用了多尺度融合的方式,但是一般都是在特征融合之后再做预测,而本文则是在不同的特征层都单独进行预测

2. 结构(Architecture)

下图所示的三种结构是在目标检测中比较常见的结构:

(a) Featurized image pyramid:这种方式就是先把图片弄成不同尺寸的,然后再对每种尺寸的图片提取不同尺度的特征,再对每个尺度的特征都进行单独的预测,这种方式的优点是不同尺度的特征都可以包含很丰富的语义信息,但是缺点就是时间成本太高。

(b) Pyramid feature hierarchy:这是SSD采用的多尺度融合的方法,即从网络不同层抽取不同尺度的特征,然后在这不同尺度的特征上分别进行预测,这种方法的优点在于它不需要额外的计算量。而缺点就是有些尺度的特征语义信息不是很丰富,此外,SSD没有用到足够低层的特征,作者认为低层的特征对于小物体检测是非常有帮助的。

(c) Single feature map:这是在SPPnet,Fast R-CNN,Faster R-CNN中使用的,就是在网络的最后一层的特征图上进行预测。这种方法的优点是计算速度会比较快,但是缺点就是最后一层的特征图分辨率低,不能准确的包含物体的位置信息。

所以为了使得不同尺度的特征都包含丰富的语义信息,同时又不使得计算成本过高,作者就采用top down和lateral connection的方式,让低层高分辨率低语义的特征和高层低分辨率高语义的特征融合在一起,使得最终得到的不同尺度的特征图都有丰富的语义信息,如图2所示。

3. 特征金字塔(Feature Pyramid Network)

特征金字塔的结构主要包括三个部分:bottom-up,top-down和lateral connection。

相关推荐
忆~遂愿3 分钟前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
Liue612312317 分钟前
YOLO11-C3k2-MBRConv3改进提升金属表面缺陷检测与分类性能_焊接裂纹气孔飞溅物焊接线识别
人工智能·分类·数据挖掘
一切尽在,你来15 分钟前
第二章 预告内容
人工智能·langchain·ai编程
23遇见19 分钟前
基于 CANN 框架的 AI 加速:ops-nn 仓库的关键技术解读
人工智能
Codebee28 分钟前
OoderAgent 企业版 2.0 发布的意义:一次生态战略的全面升级
人工智能
光泽雨1 小时前
检测阈值 匹配阈值分析 金字塔
图像处理·人工智能·计算机视觉·机器视觉·smart3
Σίσυφος19001 小时前
PCL 法向量估计-PCA邻域点(经典 kNN 协方差)的协方差矩阵
人工智能·线性代数·矩阵
小鸡吃米…1 小时前
机器学习的商业化变现
人工智能·机器学习
sali-tec1 小时前
C# 基于OpenCv的视觉工作流-章22-Harris角点
图像处理·人工智能·opencv·算法·计算机视觉
2的n次方_1 小时前
ops-math 极限精度优化:INT8/INT4 基础运算的底层指令集映射与核函数复用
人工智能