PaddlePaddle----基于paddlehub的OCR识别

Paddlehub介绍

PaddleHub是一个基于PaddlePaddle深度学习框架开发的预训练模型库和工具集,提供了丰富的功能和模型,包括但不限于以下几种:

1.文本相关功能:包括文本分类、情感分析、文本生成、文本相似度计算等预训练模型和工具。

2.图像相关功能:包括图像分类、目标检测、人脸识别、图像生成等任务的预训练模型和工具。

3.视频相关功能:包括视频分类、视频目标检测、视频行为识别等任务的预训练模型和工具。

4.语音相关功能:包括语音识别、语音合成、语音情感分析等任务的预训练模型和工具。

5.推荐系统相关功能:包括推荐模型、召回模型等预训练模型和工具。

6.自然语言处理相关功能:包括词向量、句向量、文本匹配、关键词提取等预训练模型和工具。

7.多模态相关功能:包括图文匹配、文图生成等多模态任务的预训练模型和工具。

除了以上列举的功能外,PaddleHub还提供了模型管理、模型训练、模型部署等功能,方便用户快速部署和使用深度学习模型。用户可以通过PaddleHub轻松实现各种深度学习任务,加速模型开发和部署过程。

Paddlehub的OCR环境搭建

搭建环境的时候有两点需要注意:

  1. paddlepaddle和paddlehub的版本要匹配起来
  2. 需要安装隐形的依赖库(如下)
复制代码
#需要将PaddleHub和PaddlePaddle统一升级到2.0版本
!pip install paddlehub==2.0.0 -i https://pypi.tuna.tsinghua.edu.cn/simple  
!pip install paddlepaddle==2.0.0 -i https://pypi.tuna.tsinghua.edu.cn/simple  
#该Module依赖于第三方库shapely、pyclipper,使用该Module之前,请先安装shapely、pyclipper 
!pip install shapely -i https://pypi.tuna.tsinghua.edu.cn/simple  
!pip install pyclipper -i https://pypi.tuna.tsinghua.edu.cn/simple 

这里我介绍一下我本机电脑的相关环境:

系统:windows10 企业版(无独立显卡)

编译器:python 3.6.8(X64)

依赖包:

numpy 1.16.4

pandas 0.21.1

scipy 1.2.2

opencv-python 3.4.2.16

paddlepaddle 1.8.4

paddlehub 1.8.2

Shapely 1.7.1

pyclipper 1.2.0

OCR介绍

光学字符识别(Optical Character Recognition, OCR)是指对文本材料的图像文件进行分析识别处理,以获取文字和版本信息的过程。也就是说将图象中的文字进行识别,并返回文本形式的内容。例如(该预测效果基于PaddleHub一键OCR中文识别效果展示):

识别网络图如下:

典型的OCR技术路线如下图所示:

其中OCR识别的关键路径在于文字检测和文本识别部分,这也是深度学习技术可以充分发挥功效的地方。PaddleHub为大家开源的预训练模型的网络结构是Differentiable Binarization+ CRNN,基于icdar2015数据集下进行的训练。

环境测试

下面用一段简单的代码来测试一下环境是否安装成功,该代码段功能主要是来检测图像中的文字区域,需要注意的是,你应该提前准备好一张图片"fp.png"和代码在同一个目录中。

复制代码
import paddlehub as hub
import cv2

text_detector = hub.Module(name="chinese_text_detection_db_server")
result = text_detector.detect_text(images=[cv2.imread('fp.png')])
print(result)

输出:

**提示:**第一次运行的时候需要联网下载相应的模型,否则会报错。我的因为模型下载完毕,所以提示无需安装。

OCR识别

复制代码
# -*- coding = 'utf-8' -*-
# 测试OCR安装环境

import paddlehub as hub
import cv2
import time

file = r'fp.png'
t1 = time.time()
#ocr = hub.Module(name="chinese_ocr_db_crnn_server")
ocr = hub.Module(name="chinese_ocr_db_crnn_mobile")
result_list = []
image = cv2.imread(file)
#print(image)
#image = image[440:550,170:290]
#image = cv2.resize(image,[300,300])
#cv2.imwrite('./2.jpg', image)
t2 = time.time()
results = ocr.recognize_text(
        images=[image],  # 图片数据,ndarray.shape 为 [H, W, C],BGR格式;
        use_gpu=False,  # 是否使用 GPU;若使用GPU,请先设置CUDA_VISIBLE_DEVICES环境变量
        visualization=True,  # 是否将识别结果保存为图片文件;
        box_thresh=0.5,  # 检测文本框置信度的阈值;
        text_thresh=0.5)  # 识别中文文本置信度的阈值;
for result in results:
    data = result['data']
    for index, infomation in enumerate(data):
        result_list.append(infomation['text'])
#print(result_list)
t3 = time.time()
print(results, t2-t1,t3-t2)
相关推荐
小明_GLC1 分钟前
Falcon-TST: A Large-Scale Time Series Foundation Model
论文阅读·人工智能·深度学习·transformer
Python_Study20251 分钟前
制造业数据采集系统选型指南:从技术挑战到架构实践
大数据·网络·数据结构·人工智能·架构
一只大侠的侠5 分钟前
【工业AI热榜】LSTM+GRU融合实战:设备故障预测准确率99.3%,附开源数据集与完整代码
人工智能·gru·lstm
weisian15112 分钟前
入门篇--知名企业-26-华为-2--华为VS阿里:两种科技路径的较量与共生
人工智能·科技·华为·阿里
棒棒的皮皮19 分钟前
【深度学习】YOLO模型精度优化 Checklist
人工智能·深度学习·yolo·计算机视觉
线束线缆组件品替网26 分钟前
Bulgin 防水圆形线缆在严苛环境中的工程实践
人工智能·数码相机·自动化·软件工程·智能电视
Cherry的跨界思维32 分钟前
【AI测试全栈:Vue核心】22、从零到一:Vue3+ECharts构建企业级AI测试可视化仪表盘项目实战
vue.js·人工智能·echarts·vue3·ai全栈·测试全栈·ai测试全栈
冬奇Lab33 分钟前
【Cursor进阶实战·07】OpenSpec实战:告别“凭感觉“,用规格驱动AI编程
人工智能·ai编程
玖疯子36 分钟前
2025年总结框架
人工智能
dazzle1 小时前
计算机视觉处理(OpenCV基础教学(十九):图像轮廓特征查找技术详解)
人工智能·opencv·计算机视觉