【R语言实战】聚类分析及可视化

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972

个人介绍: 研一|统计学|干货分享
         擅长Python、Matlab、R等主流编程软件
         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

文章目录

  • [1 系统聚类及可视化](#1 系统聚类及可视化)
  • [2 KMeans聚类及可视化](#2 KMeans聚类及可视化)

洛杉矶街区数据(LA.Neihborhoods.csv) 这是美国普查局2000年的数据。一共有110个街区,15个变量。变量情况见下表。表中API为涉及学生成绩的Academic Performance Index的缩写。增加单位面积下的人口数(变量名density),试对修改后的数据按照income,age,homes,white和density的数据进行系统聚类和Kmeans聚类分析(分成5类),并根据所分类别和每个街区的经纬度,把各个类用不同的符号画图进行可视化。

1 系统聚类及可视化

运行代码:

复制代码
w=read.csv("E://mvstats5/data/LA.Neighborhoods.csv")#读入数据
w=data.frame(w,density=w$Population/w$Area)#增加人口密度变量
u=w[,c(1,2,5,6,11,16)]#选择变量
hw=hclust(dist(scale(u[,-1])), "ward.D2") #对标准化的数据做分层聚类, 聚类方法选的"ward.D2"
plot(hw,labels=u[,1],cex=0.6)#画树状图
id=identify(hw)#手工分成5份
rect.hclust(hw,5)

运行结果:

2 KMeans聚类及可视化

运行代码:

复制代码
a=kmeans(scale(u[,-1]),5);ppp=c(7,17,19,21)
plot(w[a$cluster==1,14:15],pch=1,col=1,xlim=c(-118.7,-118.2),ylim=c(33.73,34.32),main="Los Angeles")
for(i in 2:5){
  points(w[a$cluster==i,14:15],pch=ppp[i-1],col=2:5)
  legend("bottomleft",pch=c(1,ppp),paste("Cluster",1:4))
}

运行结果:

相关推荐
ankleless7 分钟前
Python 数据可视化:Matplotlib 与 Seaborn 实战
开发语言·python
Gavin_91521 分钟前
一文速通Ruby语法
开发语言·ruby
搞一搞汽车电子32 分钟前
vs studio 2017项目不支持studio vs2022
开发语言
猿究院--冯磊43 分钟前
JVM垃圾收集器
java·jvm·算法
witkey_ak98961 小时前
python 可迭代对象相关知识点
开发语言·python
野犬寒鸦1 小时前
力扣hot100:最大子数组和的两种高效方法:前缀和与Kadane算法(53)
java·后端·算法
呼啦啦啦啦啦啦啦啦1 小时前
synchronized锁,ReentrantLock 锁
开发语言·
我家大宝最可爱2 小时前
动态规划:入门思考篇
算法·动态规划·代理模式
听风的码2 小时前
Vue2封装Axios
开发语言·前端·javascript·vue.js
肉夹馍不加青椒2 小时前
第三十三天(信号量)
java·c语言·算法