NLP:文本相似度计算

前面我们已经实现了把长段的句子,利用HanLP拆分成足够精炼的分词,后面我们要实现"联想"功能,我这里初步只能想到通过文本相似度计算来实现。下面介绍一下文本相似度计算

(当然HanLP也有文本相似度计算的方法,这里我应该上一节也说过,但是使用之后效果并不理想,因此,我们要换其他的方法)

这里我们采取的是text2vec,事实上网上通用的是word2vec,但是他要求自己训练模型,而且github上的流程我没看得懂,所以我就在github上找了别人现成的模型来使用

  • 下载
bash 复制代码
pip install torch # conda install pytorch
pip install -U text2vec

这里下载第二个的时候建议用上镜像,并且请在网络较好的地方下载

  • 测试
bash 复制代码
import sys


sys.path.append('..')
from text2vec import Similarity

# Two lists of sentences
sentences1 = ['c++开发十年经验',
              '善于沟通,领导他人',
              '全栈开发',
              '你好']

sentences2 = ['擅长编程',
              '体贴',
              'web 开发',
              '有领导能力']

sim_model = Similarity()
for i in range(len(sentences1)):
    for j in range(len(sentences2)):
        score = sim_model.get_score(sentences1[i], sentences2[j])
        print("{} \t\t {} \t\t Score: {:.4f}".format(sentences1[i], sentences2[j], score))

放上运行结果

可以发现,联想的效果还是有的,至少在我当前的需求下,它是完全够用的。

这是一个很关键的报错,具体可以参考这位老哥的博客:解决办法

(不过确实,因为围墙的存在,在一定程度上是阻碍了国内科研和学习的发展)

亲测可行的方法则是在代码前面补充上下面两行代码(即利用镜像)

bash 复制代码
import os
os.environ['HF_ENDPOINT']='https://hf-mirror.com'

之后如果有闲工夫的话,我还是想利用word2vec来训练一个自己的模型,毕竟数据摆在这里,不用而去调别人现成的模型,多少是不会满足特定场景的需求。

参考文献:

python实现文本相似度的计算

python利用word2vec计算文本相似度

wiki. model下载

相关推荐
koo3645 小时前
李宏毅机器学习笔记32
人工智能·笔记·机器学习
长桥夜波5 小时前
机器学习日报04
人工智能·机器学习
Cathyqiii7 小时前
Diffusion-TS:一种基于季节性-趋势分解与重构引导的可解释时间序列扩散模型
人工智能·神经网络·1024程序员节
数字冰雹7 小时前
数字孪生技术 重构 智能仓储新生态
人工智能·重构
EasyCVR8 小时前
从汇聚到智能:解析视频融合平台EasyCVR视频智能分析技术背后的关键技术
大数据·人工智能
m0_650108248 小时前
【论文精读】GenTron:基于 Transformer 的扩散模型革新图像与视频生成
人工智能·论文精读·transformer扩散模型·文生图(t2i)·文生视频(t2v)
文火冰糖的硅基工坊8 小时前
[人工智能-大模型-66]:模型层技术 - 两种编程范式:数学函数式编程与逻辑推理式编程,构建起截然不同的智能系统。
人工智能·神经网络·算法·1024程序员节
创思通信9 小时前
树莓派的YOLO智能AI识别系统,识别ESP32还是STM32
人工智能·stm32·yolo
funfan05179 小时前
【开发AI】Windows安装和使用Milvus的保姆级教程
人工智能·windows·milvus
Fuly10249 小时前
使用docker安装向量数据库milvus
人工智能