NLP:文本相似度计算

前面我们已经实现了把长段的句子,利用HanLP拆分成足够精炼的分词,后面我们要实现"联想"功能,我这里初步只能想到通过文本相似度计算来实现。下面介绍一下文本相似度计算

(当然HanLP也有文本相似度计算的方法,这里我应该上一节也说过,但是使用之后效果并不理想,因此,我们要换其他的方法)

这里我们采取的是text2vec,事实上网上通用的是word2vec,但是他要求自己训练模型,而且github上的流程我没看得懂,所以我就在github上找了别人现成的模型来使用

  • 下载
bash 复制代码
pip install torch # conda install pytorch
pip install -U text2vec

这里下载第二个的时候建议用上镜像,并且请在网络较好的地方下载

  • 测试
bash 复制代码
import sys


sys.path.append('..')
from text2vec import Similarity

# Two lists of sentences
sentences1 = ['c++开发十年经验',
              '善于沟通,领导他人',
              '全栈开发',
              '你好']

sentences2 = ['擅长编程',
              '体贴',
              'web 开发',
              '有领导能力']

sim_model = Similarity()
for i in range(len(sentences1)):
    for j in range(len(sentences2)):
        score = sim_model.get_score(sentences1[i], sentences2[j])
        print("{} \t\t {} \t\t Score: {:.4f}".format(sentences1[i], sentences2[j], score))

放上运行结果

可以发现,联想的效果还是有的,至少在我当前的需求下,它是完全够用的。

这是一个很关键的报错,具体可以参考这位老哥的博客:解决办法

(不过确实,因为围墙的存在,在一定程度上是阻碍了国内科研和学习的发展)

亲测可行的方法则是在代码前面补充上下面两行代码(即利用镜像)

bash 复制代码
import os
os.environ['HF_ENDPOINT']='https://hf-mirror.com'

之后如果有闲工夫的话,我还是想利用word2vec来训练一个自己的模型,毕竟数据摆在这里,不用而去调别人现成的模型,多少是不会满足特定场景的需求。

参考文献:

python实现文本相似度的计算

python利用word2vec计算文本相似度

wiki. model下载

相关推荐
AI 嗯啦6 分钟前
SQL详细语法教程(四)约束和多表查询
数据库·人工智能·sql
三块钱079420 分钟前
如何让AI视频模型(如Veo)开口说中文?一个顶级提示词的深度拆解
人工智能
轻松Ai享生活27 分钟前
从0-1学习CUDA | week 1
人工智能
蒋星熠29 分钟前
C++零拷贝网络编程实战:从理论到生产环境的性能优化之路
网络·c++·人工智能·深度学习·性能优化·系统架构
wayman_he_何大民33 分钟前
初始机器学习算法 - 关联分析
前端·人工智能
杭州泽沃电子科技有限公司40 分钟前
告别翻山越岭!智能监拍远程守护输电线路安全
运维·人工智能·科技·安全
wayman_he_何大民42 分钟前
初始机器学习算法 - 聚类分析
前端·人工智能
TDengine (老段)1 小时前
TDengine IDMP 高级功能(4. 元素引用)
大数据·数据库·人工智能·物联网·数据分析·时序数据库·tdengine
curdcv_po1 小时前
😲AI 💪🏻超级 整合时代 已经 到来~
人工智能·trae
*星星之火*1 小时前
【GPT入门】第47课 大模型量化中 float32/float16/uint8/int4 的区别解析:从位数到应用场景
人工智能·gpt