Flink创建TableEnvironment

在官网上,Flink创建TableEnvironment有两种方式:1.通过静态方法 TableEnvironment.create() 创建;2.从现有的 StreamExecutionEnvironment 创建一个 StreamTableEnvironment 与 DataStream API 互操作

java 复制代码
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.TableEnvironment;


//1.通过静态方法 TableEnvironment.create() 创建
EnvironmentSettings settings = EnvironmentSettings
    .newInstance()
    .inStreamingMode()//默认为StreamingMode。可以不写
    //.inBatchMode()
    //.useOldPlanner()//1.14.4已过时
    //.useBlinkPlanner()//1.14.4已过时。默认BLINK
    .build();

TableEnvironment tEnv = TableEnvironment.create(settings);

//2.从现有的 StreamExecutionEnvironment 创建一个 StreamTableEnvironment 与 DataStream API 互操作
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);

而在写代码时会发现,通过静态方法 TableEnvironment.create() 创建时,create()方法有两种参数,一种就是官网上的EnvironmentSettings,另一种是Configuration。

查看源码会发现EnvironmentSettings最终还是会将EnvironmentSettings转为Configuration。且可以看到默认的RUNTIME_MODE是StreamingMode。

复制代码
TableEnvironment.create(settings)-->TableEnvironmentImpl.create(settings)-->create(settings, settings.toConfiguration())
java 复制代码
    /** Convert the environment setting to the {@link Configuration}. */
    public Configuration toConfiguration() {
        Configuration configuration = new Configuration();
        configuration.set(RUNTIME_MODE, isStreamingMode() ? STREAMING : BATCH);
        configuration.set(TABLE_PLANNER, PlannerType.BLINK);
        return configuration;
    }

同样,看EnvironmentSettings的构造方法也可以发现默认的RUNTIME_MODE是StreamingMode。

java 复制代码
    private EnvironmentSettings(
            String planner,
            @Nullable String executor,
            String builtInCatalogName,
            String builtInDatabaseName,
            boolean isStreamingMode) {
        this.planner = planner;
        this.executor = executor;
        this.builtInCatalogName = builtInCatalogName;
        this.builtInDatabaseName = builtInDatabaseName;
        this.isStreamingMode = isStreamingMode;
    }

此外,我看的是1.14.4的源码,发现默认的planner已经是BLINK,而OLD未来将不会保留。

java 复制代码
/**
 * Determine the type of the {@link Planner}. Except for the optimization, the different planner
 * also differs in the time semantic and so on.
 *
 * @deprecated The old planner has been removed in Flink 1.14. Since there is only one planner left
 *     (previously called the 'blink' planner), this class is obsolete and will be removed in future
 *     versions.
 */
@PublicEvolving
@Deprecated
public enum PlannerType {
    /** Blink planner is the up-to-date planner in Flink. */
    BLINK,

    /** Old planner is used before. It will not be maintained in the future. */
    OLD
}
相关推荐
哲讯智能科技5 分钟前
SAP环保-装备制造领域创新解决方案
大数据
钡铼技术物联网关10 分钟前
Ubuntu工控卫士在制造企业中的应用案例
大数据·人工智能·物联网·边缘计算
闯闯桑1 小时前
scala 中的@BeanProperty
大数据·开发语言·scala
闯闯桑1 小时前
Scala 中的隐式转换
大数据·scala
用户Taobaoapi20143 小时前
淘宝商品列表查询 API 接口详解
大数据
涛思数据(TDengine)4 小时前
taosd 写入与查询场景下压缩解压及加密解密的 CPU 占用分析
大数据·数据库·时序数据库·tdengine
DuDuTalk4 小时前
DuDuTalk接入DeepSeek,重构企业沟通数字化新范式
大数据·人工智能
大数据追光猿4 小时前
Qwen 模型与 LlamaFactory 结合训练详细步骤教程
大数据·人工智能·深度学习·计算机视觉·语言模型
Elastic 中国社区官方博客5 小时前
使用 Elastic-Agent 或 Beats 将 Journald 中的 syslog 和 auth 日志导入 Elastic Stack
大数据·linux·服务器·elasticsearch·搜索引擎·信息可视化·debian
对许6 小时前
Hadoop的运行模式
大数据·hadoop·分布式