Flink创建TableEnvironment

在官网上,Flink创建TableEnvironment有两种方式:1.通过静态方法 TableEnvironment.create() 创建;2.从现有的 StreamExecutionEnvironment 创建一个 StreamTableEnvironment 与 DataStream API 互操作

java 复制代码
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.TableEnvironment;


//1.通过静态方法 TableEnvironment.create() 创建
EnvironmentSettings settings = EnvironmentSettings
    .newInstance()
    .inStreamingMode()//默认为StreamingMode。可以不写
    //.inBatchMode()
    //.useOldPlanner()//1.14.4已过时
    //.useBlinkPlanner()//1.14.4已过时。默认BLINK
    .build();

TableEnvironment tEnv = TableEnvironment.create(settings);

//2.从现有的 StreamExecutionEnvironment 创建一个 StreamTableEnvironment 与 DataStream API 互操作
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);

而在写代码时会发现,通过静态方法 TableEnvironment.create() 创建时,create()方法有两种参数,一种就是官网上的EnvironmentSettings,另一种是Configuration。

查看源码会发现EnvironmentSettings最终还是会将EnvironmentSettings转为Configuration。且可以看到默认的RUNTIME_MODE是StreamingMode。

复制代码
TableEnvironment.create(settings)-->TableEnvironmentImpl.create(settings)-->create(settings, settings.toConfiguration())
java 复制代码
    /** Convert the environment setting to the {@link Configuration}. */
    public Configuration toConfiguration() {
        Configuration configuration = new Configuration();
        configuration.set(RUNTIME_MODE, isStreamingMode() ? STREAMING : BATCH);
        configuration.set(TABLE_PLANNER, PlannerType.BLINK);
        return configuration;
    }

同样,看EnvironmentSettings的构造方法也可以发现默认的RUNTIME_MODE是StreamingMode。

java 复制代码
    private EnvironmentSettings(
            String planner,
            @Nullable String executor,
            String builtInCatalogName,
            String builtInDatabaseName,
            boolean isStreamingMode) {
        this.planner = planner;
        this.executor = executor;
        this.builtInCatalogName = builtInCatalogName;
        this.builtInDatabaseName = builtInDatabaseName;
        this.isStreamingMode = isStreamingMode;
    }

此外,我看的是1.14.4的源码,发现默认的planner已经是BLINK,而OLD未来将不会保留。

java 复制代码
/**
 * Determine the type of the {@link Planner}. Except for the optimization, the different planner
 * also differs in the time semantic and so on.
 *
 * @deprecated The old planner has been removed in Flink 1.14. Since there is only one planner left
 *     (previously called the 'blink' planner), this class is obsolete and will be removed in future
 *     versions.
 */
@PublicEvolving
@Deprecated
public enum PlannerType {
    /** Blink planner is the up-to-date planner in Flink. */
    BLINK,

    /** Old planner is used before. It will not be maintained in the future. */
    OLD
}
相关推荐
mazhafener1235 小时前
智慧照明:集中控制器、单双灯控制器与智慧灯杆网关的高效协同
大数据
打码人的日常分享5 小时前
物联网智慧医院建设方案(PPT)
大数据·物联网·架构·流程图·智慧城市·制造
Lansonli7 小时前
大数据Spark(六十一):Spark基于Standalone提交任务流程
大数据·分布式·spark
渣渣盟8 小时前
基于Scala实现Flink的三种基本时间窗口操作
开发语言·flink·scala
网安INF8 小时前
CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
java·web安全·网络安全·flink·漏洞
一叶知秋哈8 小时前
Java应用Flink CDC监听MySQL数据变动内容输出到控制台
java·mysql·flink
Rverdoser8 小时前
电脑硬盘分几个区好
大数据
傻啦嘿哟8 小时前
Python 数据分析与可视化实战:从数据清洗到图表呈现
大数据·数据库·人工智能
Theodore_10228 小时前
大数据(2) 大数据处理架构Hadoop
大数据·服务器·hadoop·分布式·ubuntu·架构
簌簌曌9 小时前
CentOS7 + JDK8 虚拟机安装与 Hadoop + Spark 集群搭建实践
大数据·hadoop·spark