HDFS(Hadoop分布式文件系统)具有高吞吐量特点的原因

数据分块和分布式存储:HDFS将大文件分割成多个数据块,并通过数据块的复制和分布式存储在集群中的多台机器上存储这些数据块。这样,可以利用多台机器的并行处理能力,并同时读取或写入多个数据块,从而提高整体的吞吐量。

-注意1:虽然单个文件的block写入是串行的,但按照集群整体来看,在大量文件进行上传时,同时写入多个数据块的说法是行得通的。

顺序读写和数据本地性:HDFS支持顺序读写,即尽可能一次性读取或写入一个数据块的所有内容,而不是随机访问。通过这种方式,可以减少磁盘寻址时间,提高数据的读写效率。此外,HDFS还支持数据本地性(移动计算而非移动数据),即尽量在存储数据的节点上进行数据处理,减少数据传输的网络开销,提高数据访问速度。

优化和缓存机制:HDFS实现了一些优化和缓存机制,例如short-circuit读取(直接通过本地文件系统读取数据而不经过DataNode)、数据块复制策略等,可以减少数据访问的延迟,提高吞吐量。

水平扩展性:HDFS具有良好的水平扩展性,可以随着集群规模的增大而线性扩展,从而可以处理大规模数据并发访问的需求,提高系统的整体吞吐量。

相关推荐
元拓数智5 小时前
IntaLink:破解数仓建设痛点,重塑高效建设新范式
大数据·数据仓库·人工智能·数据关系·intalink
区块链小八歌6 小时前
从电商收入到链上资产:Liquid Royalty在 Berachain 重塑 RWA 想象力
大数据·人工智能·区块链
沃达德软件6 小时前
大数据反诈平台功能解析
大数据·人工智能
音视频牛哥6 小时前
AI时代底层技术链:GPU、云原生与大模型的协同进化全解析
大数据·云原生·kubernetes·音视频·transformer·gpu算力·云原生cloud native
howard20057 小时前
实训云上搭建大数据集群
大数据·大数据集群·实训云
大模型服务器厂商7 小时前
人形机器人的技术概况与算力支撑背景
大数据·人工智能
第二只羽毛7 小时前
主题爬虫采集主题新闻信息
大数据·爬虫·python·网络爬虫
清平乐的技术专栏7 小时前
hive中with as用法及注意事项
数据仓库·hive·hadoop
Elastic 中国社区官方博客8 小时前
ES|QL 在 9.2:智能查找连接和时间序列支持
大数据·数据库·人工智能·sql·elasticsearch·搜索引擎·全文检索
知秋正在9969 小时前
ElasticSearch服务端报错:FileSystemException: No space left on device
大数据·elasticsearch·搜索引擎