HDFS(Hadoop分布式文件系统)具有高吞吐量特点的原因

数据分块和分布式存储:HDFS将大文件分割成多个数据块,并通过数据块的复制和分布式存储在集群中的多台机器上存储这些数据块。这样,可以利用多台机器的并行处理能力,并同时读取或写入多个数据块,从而提高整体的吞吐量。

-注意1:虽然单个文件的block写入是串行的,但按照集群整体来看,在大量文件进行上传时,同时写入多个数据块的说法是行得通的。

顺序读写和数据本地性:HDFS支持顺序读写,即尽可能一次性读取或写入一个数据块的所有内容,而不是随机访问。通过这种方式,可以减少磁盘寻址时间,提高数据的读写效率。此外,HDFS还支持数据本地性(移动计算而非移动数据),即尽量在存储数据的节点上进行数据处理,减少数据传输的网络开销,提高数据访问速度。

优化和缓存机制:HDFS实现了一些优化和缓存机制,例如short-circuit读取(直接通过本地文件系统读取数据而不经过DataNode)、数据块复制策略等,可以减少数据访问的延迟,提高吞吐量。

水平扩展性:HDFS具有良好的水平扩展性,可以随着集群规模的增大而线性扩展,从而可以处理大规模数据并发访问的需求,提高系统的整体吞吐量。

相关推荐
Viking_bird5 小时前
centos 7.5 + Hadoop 3.2.4 集群搭建
linux·运维·服务器·hadoop·centos
The Open Group5 小时前
英特尔公司Darren Pulsipher 博士:以架构之力推动政府数字化转型
大数据·人工智能·架构
喂完待续5 小时前
【Tech Arch】Spark为何成为大数据引擎之王
大数据·hadoop·python·数据分析·spark·apache·mapreduce
三掌柜6666 小时前
NVIDIA 技术沙龙探秘:聚焦 Physical AI 专场前沿技术
大数据·人工智能
源码宝7 小时前
【智慧工地源码】智慧工地云平台系统,涵盖安全、质量、环境、人员和设备五大管理模块,实现实时监控、智能预警和数据分析。
java·大数据·spring cloud·数据分析·源码·智慧工地·云平台
百思可瑞教育8 小时前
Git 对象存储:理解底层原理,实现高效排错与存储优化
大数据·git·elasticsearch·搜索引擎
数据超市8 小时前
香港数据合集:建筑物、手机基站、POI、职住数据、用地类型
大数据·人工智能·智能手机·数据挖掘·数据分析
SelectDB9 小时前
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
大数据·数据分析·开源
BYSJMG11 小时前
计算机大数据毕业设计推荐:基于Hadoop+Spark的食物口味差异分析可视化系统【源码+文档+调试】
大数据·hadoop·分布式·python·spark·django·课程设计
萤丰信息13 小时前
技术赋能安全:智慧工地构建城市建设新防线
java·大数据·开发语言·人工智能·智慧城市·智慧工地