使用OpenCV实现两张图像融合在一起

简单介绍

图像融合技术是一种结合多个不同来源或不同传感器捕获的同一场景的图像数据,以生成一幅更全面、更高质量的单一图像的过程。这种技术广泛应用于遥感、医学影像分析、计算机视觉等多个领域。常见的图像融合技术包括基于像素级、特征级和决策级的融合方法,以及基于多尺度分解如图像金字塔的方法。

OpenCV + Python实现

OpenCV 中实现图像融合的一个常见方法是使用 addWeighted() 函数。这个函数可以用来对两张图像按照指定的权重进行线性组合,从而达到融合的效果。以下是一个基本的示例代码片段:

import cv2

# 读取两张图像
img1 = cv2.imread('image1.jpg')
img2 = cv2.imread('image2.jpg')

# 确保两张图像具有相同的尺寸,如果不相同,可以先调整到同一尺寸
if img1.shape != img2.shape:
    # 调整图像大小
    img1_resized = cv2.resize(img1, img2.shape[:2][::-1], interpolation=cv2.INTER_LINEAR)
    img2_resized = img2
else:
    img1_resized = img1
    img2_resized = img2

# 定义权重
alpha = 0.7 # 第一张图像的权重
beta = 0.3  # 第二张图像的权重
gamma = 0   # 常数值(可选,通常设为0)

# 使用 addWeighted() 进行图像融合
blended_img = cv2.addWeighted(img1_resized, alpha, img2_resized, beta, gamma)

# 显示或保存融合后的图像
cv2.imshow('Blended Image', blended_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 或者直接保存
cv2.imwrite('blended_image.jpg', blended_img)

在这个例子中,addWeighted() 函数接收五个参数:

  • src1(这里是 img1_resized):第一个输入图像矩阵。
  • alpha:第一个图像的权重,取值范围从0到1之间。
  • src2(这里是 img2_resized):第二个输入图像矩阵。
  • beta:第二个图像的权重。
  • gamma:常数,添加到权重和之后。

通过调整 alphabeta 参数,你可以控制两张图像在融合结果中的相对强度或透明度。如果希望得到的是简单的加权平均效果,那么通常会将 gamma 设为0。如果需要做亮度调节或者其它非线性混合,可以根据实际情况调整这些参数。

OpenCV + C++实现

在C++中使用OpenCV实现图像融合的方式与Python类似,主要区别在于语法和API调用方式。以下是使用C++实现图像融合的示例代码:

#include <opencv2/opencv.hpp>

int main() {
    // 读取两张图像
    cv::Mat img1 = cv::imread("image1.jpg");
    cv::Mat img2 = cv::imread("image2.jpg");

    // 检查图像是否成功读取
    if (img1.empty() || img2.empty()) {
        std::cout << "Error: Could not open or find the images!" << std::endl;
        return -1;
    }

    // 确保两张图像具有相同的尺寸,如果不相同,可以先调整到同一尺寸
    cv::Mat img1_resized, img2_resized;
    if (img1.size() != img2.size()) {
        cv::resize(img1, img1_resized, img2.size(), 0, 0, cv::INTER_LINEAR);
        img2_resized = img2.clone();
    } else {
        img1_resized = img1.clone();
        img2_resized = img2.clone();
    }

    // 定义权重
    double alpha = 0.7; // 第一张图像的权重
    double beta = 0.3;  // 第二张图像的权重
    double gamma = 0;   // 常数值(可选,通常设为0)

    // 使用 addWeighted() 进行图像融合
    cv::Mat blended_img;
    cv::addWeighted(img1_resized, alpha, img2_resized, beta, gamma, blended_img);

    // 显示或保存融合后的图像
    cv::imshow("Blended Image", blended_img);
    cv::waitKey(0);

    // 或者直接保存
    cv::imwrite("blended_image.jpg", blended_img);

    return 0;
}

请注意,在C++版本中,你需要包含必要的头文件,并且在显示图像后使用waitKey(0)来暂停程序执行,等待用户按键,然后关闭所有打开的窗口。同时,使用clone()函数复制图像以避免原始图像被修改。

效果展示

相关推荐
LZXCyrus15 分钟前
【杂记】vLLM如何指定GPU单卡/多卡离线推理
人工智能·经验分享·python·深度学习·语言模型·llm·vllm
我感觉。32 分钟前
【机器学习chp4】特征工程
人工智能·机器学习·主成分分析·特征工程
YRr YRr41 分钟前
深度学习神经网络中的优化器的使用
人工智能·深度学习·神经网络
DieYoung_Alive41 分钟前
一篇文章了解机器学习(下)
人工智能·机器学习
夏沫的梦43 分钟前
生成式AI对产业的影响与冲击
人工智能·aigc
goomind1 小时前
YOLOv8实战木材缺陷识别
人工智能·yolo·目标检测·缺陷检测·pyqt5·木材缺陷识别
只怕自己不够好1 小时前
《OpenCV 图像基础操作全解析:从读取到像素处理与 ROI 应用》
人工智能·opencv·计算机视觉
幻风_huanfeng1 小时前
人工智能之数学基础:线性代数在人工智能中的地位
人工智能·深度学习·神经网络·线性代数·机器学习·自然语言处理
嵌入式大圣1 小时前
嵌入式系统与OpenCV
人工智能·opencv·计算机视觉
ZOMI酱2 小时前
【AI系统】GPU 架构与 CUDA 关系
人工智能·架构