LLM(大语言模型)常用评测指标之F1-Score

F1-Score

F1-Score 是一种常用于评估分类模型性能的指标,特别是在数据不平衡的情况下。它是精确度 (Precision) 和召回率 (Recall) 的调和平均值,用于衡量模型对正类的预测能力。

计算方法

  1. 精确度 (Precision) :是指正确预测为正类的数量与所有预测为正类的数量之比。它反映了模型预测正类的准确性。
    P r e c i s i o n = T P T P + F P Precision = \frac{TP}{TP + FP} Precision=TP+FPTP

    其中,TP (True Positives) 是真正类的数量,FP (False Positives) 是假正类的数量。

  2. 召回率 (Recall) :是指正确预测为正类的数量与实际正类的数量之比。它反映了模型找出正类的能力。
    R e c a l l = T P T P + F N Recall = \frac{TP}{TP + FN} Recall=TP+FNTP

    其中,FN (False Negatives) 是假负类的数量。

  3. F1-Score :是精确度和召回率的调和平均值,用于平衡精确度和召回率。
    F 1 = 2 × P r e c i s i o n × R e c a l l P r e c i s i o n + R e c a l l F1 = 2 \times \frac{Precision \times Recall}{Precision + Recall} F1=2×Precision+RecallPrecision×Recall

应用场景

F1-Score 通常用于评估分类模型,尤其是在正负类样本不平衡的情况下。它帮助衡量模型对少数类的预测能力,因此在医学诊断、欺诈检测、文本分类等领域被广泛使用。

示例

假设一个二分类模型的混淆矩阵如下:

预测正类 预测负类
实际正类 TP = 80 FN = 20
实际负类 FP = 30 TN = 70
  • 精确度 (Precision) = 80 / (80 + 30) = 0.727
  • 召回率 (Recall) = 80 / (80 + 20) = 0.8
  • F1-Score = 2 * (0.727 * 0.8) / (0.727 + 0.8) = 0.761

因此,该模型的 F1-Score 为 0.761,反映了模型在平衡精确度和召回率方面的性能。

相关推荐
l1t17 分钟前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华1 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu2 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师3 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr8285 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
风中的微尘5 小时前
39.网络流入门
开发语言·网络·c++·算法
研梦非凡5 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成5 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃6 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)6 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑