LLM(大语言模型)常用评测指标之F1-Score

F1-Score

F1-Score 是一种常用于评估分类模型性能的指标,特别是在数据不平衡的情况下。它是精确度 (Precision) 和召回率 (Recall) 的调和平均值,用于衡量模型对正类的预测能力。

计算方法

  1. 精确度 (Precision) :是指正确预测为正类的数量与所有预测为正类的数量之比。它反映了模型预测正类的准确性。
    P r e c i s i o n = T P T P + F P Precision = \frac{TP}{TP + FP} Precision=TP+FPTP

    其中,TP (True Positives) 是真正类的数量,FP (False Positives) 是假正类的数量。

  2. 召回率 (Recall) :是指正确预测为正类的数量与实际正类的数量之比。它反映了模型找出正类的能力。
    R e c a l l = T P T P + F N Recall = \frac{TP}{TP + FN} Recall=TP+FNTP

    其中,FN (False Negatives) 是假负类的数量。

  3. F1-Score :是精确度和召回率的调和平均值,用于平衡精确度和召回率。
    F 1 = 2 × P r e c i s i o n × R e c a l l P r e c i s i o n + R e c a l l F1 = 2 \times \frac{Precision \times Recall}{Precision + Recall} F1=2×Precision+RecallPrecision×Recall

应用场景

F1-Score 通常用于评估分类模型,尤其是在正负类样本不平衡的情况下。它帮助衡量模型对少数类的预测能力,因此在医学诊断、欺诈检测、文本分类等领域被广泛使用。

示例

假设一个二分类模型的混淆矩阵如下:

预测正类 预测负类
实际正类 TP = 80 FN = 20
实际负类 FP = 30 TN = 70
  • 精确度 (Precision) = 80 / (80 + 30) = 0.727
  • 召回率 (Recall) = 80 / (80 + 20) = 0.8
  • F1-Score = 2 * (0.727 * 0.8) / (0.727 + 0.8) = 0.761

因此,该模型的 F1-Score 为 0.761,反映了模型在平衡精确度和召回率方面的性能。

相关推荐
历程里程碑几秒前
子串-----和为 K 的子数组
java·数据结构·c++·python·算法·leetcode·tornado
xixixi777771 分钟前
Prompt脱敏——不损失(或尽量少损失)原文本语义和上下文价值的前提下,防止原始敏感数据暴露给模型服务方、潜在的攻击者或出现在模型训练数据中
人工智能·microsoft·ai·大模型·数据安全·提示词·敏感信息
一起养小猫1 分钟前
Flutter for OpenHarmony 进阶:表达式解析算法与计算器核心实现
算法·flutter·harmonyos
凡泰极客科技1 分钟前
新浪财经专访凡泰极客梁启鸿:金融App的AI落地应避哪些坑
人工智能·金融
量子-Alex3 分钟前
【大模型技术报告】Qwen2-VL技术报告解读
人工智能
得赢科技5 分钟前
2026年料汁定制公司深度评测报告
人工智能
池央7 分钟前
贪心-最长递增子序列
算法·贪心算法
jllllyuz11 分钟前
基于卷积神经网络(CNN)的图像融合方法详解
人工智能·神经网络·cnn
We་ct12 分钟前
LeetCode 383. 赎金信:解题思路+代码解析+优化实战
前端·算法·leetcode·typescript
风流 少年14 分钟前
解决AI画图的最后一公里-Next AI Draw.io MCP实践
人工智能·draw.io