LLM(大语言模型)常用评测指标之F1-Score

F1-Score

F1-Score 是一种常用于评估分类模型性能的指标,特别是在数据不平衡的情况下。它是精确度 (Precision) 和召回率 (Recall) 的调和平均值,用于衡量模型对正类的预测能力。

计算方法

  1. 精确度 (Precision) :是指正确预测为正类的数量与所有预测为正类的数量之比。它反映了模型预测正类的准确性。
    P r e c i s i o n = T P T P + F P Precision = \frac{TP}{TP + FP} Precision=TP+FPTP

    其中,TP (True Positives) 是真正类的数量,FP (False Positives) 是假正类的数量。

  2. 召回率 (Recall) :是指正确预测为正类的数量与实际正类的数量之比。它反映了模型找出正类的能力。
    R e c a l l = T P T P + F N Recall = \frac{TP}{TP + FN} Recall=TP+FNTP

    其中,FN (False Negatives) 是假负类的数量。

  3. F1-Score :是精确度和召回率的调和平均值,用于平衡精确度和召回率。
    F 1 = 2 × P r e c i s i o n × R e c a l l P r e c i s i o n + R e c a l l F1 = 2 \times \frac{Precision \times Recall}{Precision + Recall} F1=2×Precision+RecallPrecision×Recall

应用场景

F1-Score 通常用于评估分类模型,尤其是在正负类样本不平衡的情况下。它帮助衡量模型对少数类的预测能力,因此在医学诊断、欺诈检测、文本分类等领域被广泛使用。

示例

假设一个二分类模型的混淆矩阵如下:

预测正类 预测负类
实际正类 TP = 80 FN = 20
实际负类 FP = 30 TN = 70
  • 精确度 (Precision) = 80 / (80 + 30) = 0.727
  • 召回率 (Recall) = 80 / (80 + 20) = 0.8
  • F1-Score = 2 * (0.727 * 0.8) / (0.727 + 0.8) = 0.761

因此,该模型的 F1-Score 为 0.761,反映了模型在平衡精确度和召回率方面的性能。

相关推荐
yusaisai大鱼1 小时前
TensorFlow如何调用GPU?
人工智能·tensorflow
LNTON羚通1 小时前
摄像机视频分析软件下载LiteAIServer视频智能分析平台玩手机打电话检测算法技术的实现
算法·目标检测·音视频·监控·视频监控
哭泣的眼泪4083 小时前
解析粗糙度仪在工业制造及材料科学和建筑工程领域的重要性
python·算法·django·virtualenv·pygame
珠海新立电子科技有限公司3 小时前
FPC柔性线路板与智能生活的融合
人工智能·生活·制造
IT古董3 小时前
【机器学习】机器学习中用到的高等数学知识-8. 图论 (Graph Theory)
人工智能·机器学习·图论
Microsoft Word3 小时前
c++基础语法
开发语言·c++·算法
曼城周杰伦4 小时前
自然语言处理:第六十三章 阿里Qwen2 & 2.5系列
人工智能·阿里云·语言模型·自然语言处理·chatgpt·nlp·gpt-3
天才在此4 小时前
汽车加油行驶问题-动态规划算法(已在洛谷AC)
算法·动态规划
余炜yw4 小时前
【LSTM实战】跨越千年,赋诗成文:用LSTM重现唐诗的韵律与情感
人工智能·rnn·深度学习
莫叫石榴姐5 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘