LLM(大语言模型)常用评测指标之F1-Score

F1-Score

F1-Score 是一种常用于评估分类模型性能的指标,特别是在数据不平衡的情况下。它是精确度 (Precision) 和召回率 (Recall) 的调和平均值,用于衡量模型对正类的预测能力。

计算方法

  1. 精确度 (Precision) :是指正确预测为正类的数量与所有预测为正类的数量之比。它反映了模型预测正类的准确性。
    P r e c i s i o n = T P T P + F P Precision = \frac{TP}{TP + FP} Precision=TP+FPTP

    其中,TP (True Positives) 是真正类的数量,FP (False Positives) 是假正类的数量。

  2. 召回率 (Recall) :是指正确预测为正类的数量与实际正类的数量之比。它反映了模型找出正类的能力。
    R e c a l l = T P T P + F N Recall = \frac{TP}{TP + FN} Recall=TP+FNTP

    其中,FN (False Negatives) 是假负类的数量。

  3. F1-Score :是精确度和召回率的调和平均值,用于平衡精确度和召回率。
    F 1 = 2 × P r e c i s i o n × R e c a l l P r e c i s i o n + R e c a l l F1 = 2 \times \frac{Precision \times Recall}{Precision + Recall} F1=2×Precision+RecallPrecision×Recall

应用场景

F1-Score 通常用于评估分类模型,尤其是在正负类样本不平衡的情况下。它帮助衡量模型对少数类的预测能力,因此在医学诊断、欺诈检测、文本分类等领域被广泛使用。

示例

假设一个二分类模型的混淆矩阵如下:

预测正类 预测负类
实际正类 TP = 80 FN = 20
实际负类 FP = 30 TN = 70
  • 精确度 (Precision) = 80 / (80 + 30) = 0.727
  • 召回率 (Recall) = 80 / (80 + 20) = 0.8
  • F1-Score = 2 * (0.727 * 0.8) / (0.727 + 0.8) = 0.761

因此,该模型的 F1-Score 为 0.761,反映了模型在平衡精确度和召回率方面的性能。

相关推荐
艾派森几秒前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11232 分钟前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子7 分钟前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing19 分钟前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
为什么这亚子39 分钟前
九、Go语言快速入门之map
运维·开发语言·后端·算法·云原生·golang·云计算
黄焖鸡能干四碗1 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
1 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
ctrey_1 小时前
2024-11-4 学习人工智能的Day21 openCV(3)
人工智能·opencv·学习
~yY…s<#>1 小时前
【刷题17】最小栈、栈的压入弹出、逆波兰表达式
c语言·数据结构·c++·算法·leetcode
攻城狮_Dream1 小时前
“探索未来医疗:生成式人工智能在医疗领域的革命性应用“
人工智能·设计·医疗·毕业