LLM(大语言模型)常用评测指标之F1-Score

F1-Score

F1-Score 是一种常用于评估分类模型性能的指标,特别是在数据不平衡的情况下。它是精确度 (Precision) 和召回率 (Recall) 的调和平均值,用于衡量模型对正类的预测能力。

计算方法

  1. 精确度 (Precision) :是指正确预测为正类的数量与所有预测为正类的数量之比。它反映了模型预测正类的准确性。
    P r e c i s i o n = T P T P + F P Precision = \frac{TP}{TP + FP} Precision=TP+FPTP

    其中,TP (True Positives) 是真正类的数量,FP (False Positives) 是假正类的数量。

  2. 召回率 (Recall) :是指正确预测为正类的数量与实际正类的数量之比。它反映了模型找出正类的能力。
    R e c a l l = T P T P + F N Recall = \frac{TP}{TP + FN} Recall=TP+FNTP

    其中,FN (False Negatives) 是假负类的数量。

  3. F1-Score :是精确度和召回率的调和平均值,用于平衡精确度和召回率。
    F 1 = 2 × P r e c i s i o n × R e c a l l P r e c i s i o n + R e c a l l F1 = 2 \times \frac{Precision \times Recall}{Precision + Recall} F1=2×Precision+RecallPrecision×Recall

应用场景

F1-Score 通常用于评估分类模型,尤其是在正负类样本不平衡的情况下。它帮助衡量模型对少数类的预测能力,因此在医学诊断、欺诈检测、文本分类等领域被广泛使用。

示例

假设一个二分类模型的混淆矩阵如下:

预测正类 预测负类
实际正类 TP = 80 FN = 20
实际负类 FP = 30 TN = 70
  • 精确度 (Precision) = 80 / (80 + 30) = 0.727
  • 召回率 (Recall) = 80 / (80 + 20) = 0.8
  • F1-Score = 2 * (0.727 * 0.8) / (0.727 + 0.8) = 0.761

因此,该模型的 F1-Score 为 0.761,反映了模型在平衡精确度和召回率方面的性能。

相关推荐
新智元6 分钟前
13 年死磕一个真理,这家中国 AI 黑马冲刺 IPO
人工智能·openai
新智元10 分钟前
12 年博士研究,AI 两天爆肝完成!科研效率狂飙 3000 倍,惊动学术圈
人工智能·openai
机器之心12 分钟前
Muon作者仅用一篇博客,就被OpenAI看中了
人工智能
量子位12 分钟前
全方位实测首个 AI 原生浏览器!618 比价、写高考作文... 网友:再见 Chrome
人工智能·ai编程
哲讯智能科技14 分钟前
苏州SAP代理商:哲讯科技助力企业数字化转型
大数据·运维·人工智能
新智元17 分钟前
陶哲轩 3 小时对话流出:AI 抢攻菲尔兹奖倒计时
人工智能·openai
Chef_Chen27 分钟前
从0开始学习语言模型--Day02-如何最大化利用硬件
人工智能·学习·语言模型
KENYCHEN奉孝27 分钟前
PyTorch 实现 MNIST 手写数字识别
人工智能·pytorch·深度学习
车队老哥记录生活28 分钟前
【MPC】模型预测控制笔记 (3):无约束输出反馈MPC
笔记·算法
vlln28 分钟前
【论文解读】AgentThink:让VLM在自动驾驶中学会思考与使用工具
人工智能·机器学习·自动驾驶