代码随想录算法训练营第24天|回溯理论基础、77.组合

目录

一、回溯理论基础


二、力扣77.组合问题

2.1 题目

2.2 思路

回溯三部曲:递归函数参数及返回值;确定终止条件;单层递归逻辑。

剪枝:

有些不符合条件的就不必去遍历了,即path.size() + 剩余的数的个数已经不满足k的大小了;

修改for循环的终止条件:找到刚好符合k的边界值,即n-(k-path.size())+1.

2.3 代码

第一次出错的代码:

cpp 复制代码
class Solution {
    public List<List<Integer>> res = new ArrayList<>();
    public List<Integer> path = new ArrayList<>();

    public List<List<Integer>> combine(int n, int k) {
        //回溯的组合问题
        backTracking(n,k,1);
        return res;
    }
    public void backTracking(int n,int k,int startIndex){
        //递归终止条件
        if(path.size() == k){
            res.add(path);
            return;
        }

        //单层递归逻辑
        for(int i = startIndex;i<=n;i++){
            path.add(i);
            backTracking(n,k,i+1);
            //回溯
            path.remove(path.size()-1);
        }
    }
}

修改后的代码:

(注意这里不能直接add path集合,否则都加入的是同一个集合,最后结果集都是同一个path的最终状态)

cpp 复制代码
class Solution {
    public List<List<Integer>> res = new ArrayList<>();
    public List<Integer> path = new ArrayList<>();

    public List<List<Integer>> combine(int n, int k) {
        //回溯的组合问题
        backTracking(n,k,1);
        return res;
    }
    public void backTracking(int n,int k,int startIndex){
        //递归终止条件
        if(path.size() == k){
            res.add(new ArrayList<>(path));//注意这里不能直接add path集合,否则都加入的是同一个集合,最后结果集都是同一个path的最终状态
            return;
        }

        //单层递归逻辑
        for(int i = startIndex;i<=n;i++){
            path.add(i);
            backTracking(n,k,i+1);
            //回溯
            path.remove(path.size()-1);
        }
    }
}

剪枝后的代码:

cpp 复制代码
class Solution {
    public List<List<Integer>> res = new ArrayList<>();
    public List<Integer> path = new ArrayList<>();

    public List<List<Integer>> combine(int n, int k) {
        //回溯的组合问题
        backTracking(n,k,1);
        return res;
    }
    public void backTracking(int n,int k,int startIndex){
        //递归终止条件
        if(path.size() == k){
            res.add(new ArrayList<>(path));//注意这里不能直接add path集合,否则都加入的是同一个集合,最后结果集都是同一个path的最终状态
            return;
        }

        //单层递归逻辑
        //剪枝优化
        for(int i = startIndex;i<= n-(k-path.size())+1;i++){
            path.add(i);
            backTracking(n,k,i+1);
            //回溯
            path.remove(path.size()-1);
        }
    }
}
相关推荐
xiaoshiguang33 小时前
LeetCode:222.完全二叉树节点的数量
算法·leetcode
爱吃西瓜的小菜鸡3 小时前
【C语言】判断回文
c语言·学习·算法
别NULL3 小时前
机试题——疯长的草
数据结构·c++·算法
TT哇3 小时前
*【每日一题 提高题】[蓝桥杯 2022 国 A] 选素数
java·算法·蓝桥杯
yuanbenshidiaos5 小时前
C++----------函数的调用机制
java·c++·算法
唐叔在学习5 小时前
【唐叔学算法】第21天:超越比较-计数排序、桶排序与基数排序的Java实践及性能剖析
数据结构·算法·排序算法
ALISHENGYA5 小时前
全国青少年信息学奥林匹克竞赛(信奥赛)备考实战之分支结构(switch语句)
数据结构·算法
chengooooooo5 小时前
代码随想录训练营第二十七天| 贪心理论基础 455.分发饼干 376. 摆动序列 53. 最大子序和
算法·leetcode·职场和发展
jackiendsc5 小时前
Java的垃圾回收机制介绍、工作原理、算法及分析调优
java·开发语言·算法
游是水里的游6 小时前
【算法day20】回溯:子集与全排列问题
算法