代码随想录算法训练营第24天|回溯理论基础、77.组合

目录

一、回溯理论基础


二、力扣77.组合问题

2.1 题目

2.2 思路

回溯三部曲:递归函数参数及返回值;确定终止条件;单层递归逻辑。

剪枝:

有些不符合条件的就不必去遍历了,即path.size() + 剩余的数的个数已经不满足k的大小了;

修改for循环的终止条件:找到刚好符合k的边界值,即n-(k-path.size())+1.

2.3 代码

第一次出错的代码:

cpp 复制代码
class Solution {
    public List<List<Integer>> res = new ArrayList<>();
    public List<Integer> path = new ArrayList<>();

    public List<List<Integer>> combine(int n, int k) {
        //回溯的组合问题
        backTracking(n,k,1);
        return res;
    }
    public void backTracking(int n,int k,int startIndex){
        //递归终止条件
        if(path.size() == k){
            res.add(path);
            return;
        }

        //单层递归逻辑
        for(int i = startIndex;i<=n;i++){
            path.add(i);
            backTracking(n,k,i+1);
            //回溯
            path.remove(path.size()-1);
        }
    }
}

修改后的代码:

(注意这里不能直接add path集合,否则都加入的是同一个集合,最后结果集都是同一个path的最终状态)

cpp 复制代码
class Solution {
    public List<List<Integer>> res = new ArrayList<>();
    public List<Integer> path = new ArrayList<>();

    public List<List<Integer>> combine(int n, int k) {
        //回溯的组合问题
        backTracking(n,k,1);
        return res;
    }
    public void backTracking(int n,int k,int startIndex){
        //递归终止条件
        if(path.size() == k){
            res.add(new ArrayList<>(path));//注意这里不能直接add path集合,否则都加入的是同一个集合,最后结果集都是同一个path的最终状态
            return;
        }

        //单层递归逻辑
        for(int i = startIndex;i<=n;i++){
            path.add(i);
            backTracking(n,k,i+1);
            //回溯
            path.remove(path.size()-1);
        }
    }
}

剪枝后的代码:

cpp 复制代码
class Solution {
    public List<List<Integer>> res = new ArrayList<>();
    public List<Integer> path = new ArrayList<>();

    public List<List<Integer>> combine(int n, int k) {
        //回溯的组合问题
        backTracking(n,k,1);
        return res;
    }
    public void backTracking(int n,int k,int startIndex){
        //递归终止条件
        if(path.size() == k){
            res.add(new ArrayList<>(path));//注意这里不能直接add path集合,否则都加入的是同一个集合,最后结果集都是同一个path的最终状态
            return;
        }

        //单层递归逻辑
        //剪枝优化
        for(int i = startIndex;i<= n-(k-path.size())+1;i++){
            path.add(i);
            backTracking(n,k,i+1);
            //回溯
            path.remove(path.size()-1);
        }
    }
}
相关推荐
TracyCoder1231 天前
LeetCode Hot100(15/100)——54. 螺旋矩阵
算法·leetcode·矩阵
u0109272711 天前
C++中的策略模式变体
开发语言·c++·算法
2501_941837261 天前
停车场车辆检测与识别系统-YOLOv26算法改进与应用分析
算法·yolo
六义义1 天前
java基础十二
java·数据结构·算法
四维碎片1 天前
QSettings + INI 笔记
笔记·qt·算法
Tansmjs1 天前
C++与GPU计算(CUDA)
开发语言·c++·算法
独自破碎E1 天前
【优先级队列】主持人调度(二)
算法
weixin_445476681 天前
leetCode每日一题——边反转的最小成本
算法·leetcode·职场和发展
打工的小王1 天前
LeetCode Hot100(一)二分查找
算法·leetcode·职场和发展
Swift社区1 天前
LeetCode 385 迷你语法分析器
算法·leetcode·职场和发展