代码随想录算法训练营第24天|回溯理论基础、77.组合

目录

一、回溯理论基础


二、力扣77.组合问题

2.1 题目

2.2 思路

回溯三部曲:递归函数参数及返回值;确定终止条件;单层递归逻辑。

剪枝:

有些不符合条件的就不必去遍历了,即path.size() + 剩余的数的个数已经不满足k的大小了;

修改for循环的终止条件:找到刚好符合k的边界值,即n-(k-path.size())+1.

2.3 代码

第一次出错的代码:

cpp 复制代码
class Solution {
    public List<List<Integer>> res = new ArrayList<>();
    public List<Integer> path = new ArrayList<>();

    public List<List<Integer>> combine(int n, int k) {
        //回溯的组合问题
        backTracking(n,k,1);
        return res;
    }
    public void backTracking(int n,int k,int startIndex){
        //递归终止条件
        if(path.size() == k){
            res.add(path);
            return;
        }

        //单层递归逻辑
        for(int i = startIndex;i<=n;i++){
            path.add(i);
            backTracking(n,k,i+1);
            //回溯
            path.remove(path.size()-1);
        }
    }
}

修改后的代码:

(注意这里不能直接add path集合,否则都加入的是同一个集合,最后结果集都是同一个path的最终状态)

cpp 复制代码
class Solution {
    public List<List<Integer>> res = new ArrayList<>();
    public List<Integer> path = new ArrayList<>();

    public List<List<Integer>> combine(int n, int k) {
        //回溯的组合问题
        backTracking(n,k,1);
        return res;
    }
    public void backTracking(int n,int k,int startIndex){
        //递归终止条件
        if(path.size() == k){
            res.add(new ArrayList<>(path));//注意这里不能直接add path集合,否则都加入的是同一个集合,最后结果集都是同一个path的最终状态
            return;
        }

        //单层递归逻辑
        for(int i = startIndex;i<=n;i++){
            path.add(i);
            backTracking(n,k,i+1);
            //回溯
            path.remove(path.size()-1);
        }
    }
}

剪枝后的代码:

cpp 复制代码
class Solution {
    public List<List<Integer>> res = new ArrayList<>();
    public List<Integer> path = new ArrayList<>();

    public List<List<Integer>> combine(int n, int k) {
        //回溯的组合问题
        backTracking(n,k,1);
        return res;
    }
    public void backTracking(int n,int k,int startIndex){
        //递归终止条件
        if(path.size() == k){
            res.add(new ArrayList<>(path));//注意这里不能直接add path集合,否则都加入的是同一个集合,最后结果集都是同一个path的最终状态
            return;
        }

        //单层递归逻辑
        //剪枝优化
        for(int i = startIndex;i<= n-(k-path.size())+1;i++){
            path.add(i);
            backTracking(n,k,i+1);
            //回溯
            path.remove(path.size()-1);
        }
    }
}
相关推荐
Jing_Rainbow8 分钟前
【LeetCode Hot100 刷题日记(19/100)】54. 螺旋矩阵 —— 数组、矩阵、模拟、双指针、层序遍历🌀
算法·面试·程序员
地平线开发者1 小时前
征程 6 | linear 高精度输出配置方式
算法·自动驾驶
小尧嵌入式1 小时前
C++基础语法总结
开发语言·c++·stm32·单片机·嵌入式硬件·算法
white-persist1 小时前
【攻防世界】reverse | IgniteMe 详细题解 WP
c语言·汇编·数据结构·c++·python·算法·网络安全
稚辉君.MCA_P8_Java1 小时前
Gemini永久会员 归并排序(Merge Sort) 基于分治思想(Divide and Conquer)的高效排序算法
java·linux·算法·spring·排序算法
地平线开发者2 小时前
征程 6 | QAT 新版 qconfig 量化模板使用教程
算法·自动驾驶
多恩Stone2 小时前
【ModelScope-1】数据集稀疏检出(Sparse Checkout)来下载指定目录
人工智能·python·算法·aigc
山峰哥2 小时前
沉浸式翻译插件深度评测:打破语言壁垒的黑科技利器
数据结构·科技·算法·编辑器·办公
AI脚下的巨人3 小时前
机器人逆运动学:从SVD到IK算法
算法·机器人
ゞ 正在缓冲99%…3 小时前
2025.9.28华为软开
算法·华为