新闻文章分类项目

注意:本文引用自专业人工智能社区Venus AI

更多AI知识请参考原站 ([www.aideeplearning.cn])

新闻文章分类模型比较项目报告

项目介绍

背景

新闻文章自动分类是自然语言处理和文本挖掘领域的一个重要任务。正确分类新闻文章不仅能帮助用户快速找到感兴趣的内容,还能提高信息检索系统的效率。

目的

本项目的目标是比较三种不同的机器学习算法 --- 朴素贝叶斯、决策树和支持向量机(SVM) --- 在新闻文章分类任务上的性能。使用的是scikit-learn中的20个新闻组数据集。

展示结果

准确率比较

  • 朴素贝叶斯 准确率: 0.77
  • 决策树 准确率: 0.55
  • SVM 准确率: 0.82

混淆矩阵

每个模型的混淆矩阵展示了在各个类别上的分类性能。

解决过程

数据预处理

  • 数据集:使用scikit-learn中的20个新闻组数据集。
  • 文本向量化:利用TF-IDF(Term Frequency-Inverse Document Frequency)方法将文本转换为数值向量。

模型构建和训练

  • 朴素贝叶斯:一个适用于文本分类的经典算法,特别是在数据集较小的情况下。
  • 决策树:易于理解和解释,但在文本分类中可能不如其他算法表现好。
  • 支持向量机(SVM):在各种文本分类任务中常表现出色,尤其是在高维数据上。

模型评估

  • 使用准确率作为主要评估指标。
  • 利用混淆矩阵详细分析每个模型在不同类别上的性能。

代码

详情代码请见

新闻文章分类项目-VenusAI (aideeplearning.cn)

结论

在本项目中,SVM在新闻文章分类任务上展现了最高的准确率,而朴素贝叶斯也表现出了相对较好的性能。决策树的准确率相对较低,可能因为其在处理高维稀疏数据时的局限性。这些发现表明,在选择合适的文本分类算法时,应考虑数据的特性和应用场景。

相关推荐
京东云开发者1 小时前
行稳、致远 | 技术驱动下的思考感悟
算法
Dignity_呱1 小时前
记一次手撕算法面试
前端·算法·面试
CodeJourney.1 小时前
深度探索:DeepSeek赋能WPS图表绘制
数据库·人工智能·算法·信息可视化·excel
陈奕昆1 小时前
6.1腾讯技术岗2025面试趋势前瞻:大模型、云原生与安全隐私新动向
算法·安全·云原生·面试·腾讯
ゞ 正在缓冲99%…1 小时前
leetcode66.加一
java·数据结构·算法
Aqua Cheng.2 小时前
华为开发岗暑期实习笔试(2025年4月16日)
java·算法·华为·动态规划
等一个自然而然的晴天~2 小时前
B. And It‘s Non-Zero
算法
清泉-通达信编程专家-苏大毕业2 小时前
N字形上升形态选股代码如何编写?
c语言·开发语言·算法·青少年编程·启发式算法
点云SLAM2 小时前
点云配准算法之NDT算法原理详解
人工智能·算法·数学建模·点云配准算法·ndt配准算法·概率模型配准算法
AI蜗牛车3 小时前
【LLM+Code】Cursor Agent 46.11 版本Prompt&Tools最细致解读
人工智能·算法·语言模型