新闻文章分类项目

注意:本文引用自专业人工智能社区Venus AI

更多AI知识请参考原站 ([www.aideeplearning.cn])

新闻文章分类模型比较项目报告

项目介绍

背景

新闻文章自动分类是自然语言处理和文本挖掘领域的一个重要任务。正确分类新闻文章不仅能帮助用户快速找到感兴趣的内容,还能提高信息检索系统的效率。

目的

本项目的目标是比较三种不同的机器学习算法 --- 朴素贝叶斯、决策树和支持向量机(SVM) --- 在新闻文章分类任务上的性能。使用的是scikit-learn中的20个新闻组数据集。

展示结果

准确率比较

  • 朴素贝叶斯 准确率: 0.77
  • 决策树 准确率: 0.55
  • SVM 准确率: 0.82

混淆矩阵

每个模型的混淆矩阵展示了在各个类别上的分类性能。

解决过程

数据预处理

  • 数据集:使用scikit-learn中的20个新闻组数据集。
  • 文本向量化:利用TF-IDF(Term Frequency-Inverse Document Frequency)方法将文本转换为数值向量。

模型构建和训练

  • 朴素贝叶斯:一个适用于文本分类的经典算法,特别是在数据集较小的情况下。
  • 决策树:易于理解和解释,但在文本分类中可能不如其他算法表现好。
  • 支持向量机(SVM):在各种文本分类任务中常表现出色,尤其是在高维数据上。

模型评估

  • 使用准确率作为主要评估指标。
  • 利用混淆矩阵详细分析每个模型在不同类别上的性能。

代码

详情代码请见

新闻文章分类项目-VenusAI (aideeplearning.cn)

结论

在本项目中,SVM在新闻文章分类任务上展现了最高的准确率,而朴素贝叶斯也表现出了相对较好的性能。决策树的准确率相对较低,可能因为其在处理高维稀疏数据时的局限性。这些发现表明,在选择合适的文本分类算法时,应考虑数据的特性和应用场景。

相关推荐
卷福同学1 小时前
【AI编程】AI+高德MCP不到10分钟搞定上海三日游
人工智能·算法·程序员
mit6.8241 小时前
[Leetcode] 预处理 | 多叉树bfs | 格雷编码 | static_cast | 矩阵对角线
算法
皮卡蛋炒饭.1 小时前
数据结构—排序
数据结构·算法·排序算法
??tobenewyorker2 小时前
力扣打卡第23天 二叉搜索树中的众数
数据结构·算法·leetcode
贝塔西塔2 小时前
一文读懂动态规划:多种经典问题和思路
算法·leetcode·动态规划
AI街潜水的八角3 小时前
深度学习图像分类数据集—五种电器识别分类
人工智能·深度学习·分类
众链网络3 小时前
AI进化论08:机器学习的崛起——数据和算法的“二人转”,AI“闷声发大财”
人工智能·算法·机器学习
平和男人杨争争3 小时前
机器学习13——支持向量机下
人工智能·机器学习·支持向量机
3 小时前
Unity开发中常用的洗牌算法
java·算法·unity·游戏引擎·游戏开发
飒飒真编程4 小时前
C++类模板继承部分知识及测试代码
开发语言·c++·算法