新闻文章分类项目

注意:本文引用自专业人工智能社区Venus AI

更多AI知识请参考原站 ([www.aideeplearning.cn])

新闻文章分类模型比较项目报告

项目介绍

背景

新闻文章自动分类是自然语言处理和文本挖掘领域的一个重要任务。正确分类新闻文章不仅能帮助用户快速找到感兴趣的内容,还能提高信息检索系统的效率。

目的

本项目的目标是比较三种不同的机器学习算法 --- 朴素贝叶斯、决策树和支持向量机(SVM) --- 在新闻文章分类任务上的性能。使用的是scikit-learn中的20个新闻组数据集。

展示结果

准确率比较

  • 朴素贝叶斯 准确率: 0.77
  • 决策树 准确率: 0.55
  • SVM 准确率: 0.82

混淆矩阵

每个模型的混淆矩阵展示了在各个类别上的分类性能。

解决过程

数据预处理

  • 数据集:使用scikit-learn中的20个新闻组数据集。
  • 文本向量化:利用TF-IDF(Term Frequency-Inverse Document Frequency)方法将文本转换为数值向量。

模型构建和训练

  • 朴素贝叶斯:一个适用于文本分类的经典算法,特别是在数据集较小的情况下。
  • 决策树:易于理解和解释,但在文本分类中可能不如其他算法表现好。
  • 支持向量机(SVM):在各种文本分类任务中常表现出色,尤其是在高维数据上。

模型评估

  • 使用准确率作为主要评估指标。
  • 利用混淆矩阵详细分析每个模型在不同类别上的性能。

代码

详情代码请见

新闻文章分类项目-VenusAI (aideeplearning.cn)

结论

在本项目中,SVM在新闻文章分类任务上展现了最高的准确率,而朴素贝叶斯也表现出了相对较好的性能。决策树的准确率相对较低,可能因为其在处理高维稀疏数据时的局限性。这些发现表明,在选择合适的文本分类算法时,应考虑数据的特性和应用场景。

相关推荐
-dzk-6 小时前
【代码随想录】LC 59.螺旋矩阵 II
c++·线性代数·算法·矩阵·模拟
风筝在晴天搁浅6 小时前
hot100 78.子集
java·算法
Jasmine_llq6 小时前
《P4587 [FJOI2016] 神秘数》
算法·倍增思想·稀疏表(st 表)·前缀和数组(解决静态区间和查询·st表核心实现高效预处理和查询·预处理优化(提前计算所需信息·快速io提升大规模数据读写效率
超级大只老咪6 小时前
快速进制转换
笔记·算法
m0_706653236 小时前
C++编译期数组操作
开发语言·c++·算法
故事和你917 小时前
sdut-Java面向对象-06 继承和多态、抽象类和接口(函数题:10-18题)
java·开发语言·算法·面向对象·基础语法·继承和多态·抽象类和接口
qq_423233907 小时前
C++与Python混合编程实战
开发语言·c++·算法
TracyCoder1237 小时前
LeetCode Hot100(19/100)——206. 反转链表
算法·leetcode
m0_715575347 小时前
分布式任务调度系统
开发语言·c++·算法