新闻文章分类项目

注意:本文引用自专业人工智能社区Venus AI

更多AI知识请参考原站 ([www.aideeplearning.cn])

新闻文章分类模型比较项目报告

项目介绍

背景

新闻文章自动分类是自然语言处理和文本挖掘领域的一个重要任务。正确分类新闻文章不仅能帮助用户快速找到感兴趣的内容,还能提高信息检索系统的效率。

目的

本项目的目标是比较三种不同的机器学习算法 --- 朴素贝叶斯、决策树和支持向量机(SVM) --- 在新闻文章分类任务上的性能。使用的是scikit-learn中的20个新闻组数据集。

展示结果

准确率比较

  • 朴素贝叶斯 准确率: 0.77
  • 决策树 准确率: 0.55
  • SVM 准确率: 0.82

混淆矩阵

每个模型的混淆矩阵展示了在各个类别上的分类性能。

解决过程

数据预处理

  • 数据集:使用scikit-learn中的20个新闻组数据集。
  • 文本向量化:利用TF-IDF(Term Frequency-Inverse Document Frequency)方法将文本转换为数值向量。

模型构建和训练

  • 朴素贝叶斯:一个适用于文本分类的经典算法,特别是在数据集较小的情况下。
  • 决策树:易于理解和解释,但在文本分类中可能不如其他算法表现好。
  • 支持向量机(SVM):在各种文本分类任务中常表现出色,尤其是在高维数据上。

模型评估

  • 使用准确率作为主要评估指标。
  • 利用混淆矩阵详细分析每个模型在不同类别上的性能。

代码

详情代码请见

新闻文章分类项目-VenusAI (aideeplearning.cn)

结论

在本项目中,SVM在新闻文章分类任务上展现了最高的准确率,而朴素贝叶斯也表现出了相对较好的性能。决策树的准确率相对较低,可能因为其在处理高维稀疏数据时的局限性。这些发现表明,在选择合适的文本分类算法时,应考虑数据的特性和应用场景。

相关推荐
前端小L5 小时前
贪心算法专题(十):维度权衡的艺术——「根据身高重建队列」
javascript·算法·贪心算法
方得一笔5 小时前
自定义常用的字符串函数(strlen,strcpy,strcmp,strcat)
算法
Xの哲學5 小时前
Linux SMP 实现机制深度剖析
linux·服务器·网络·算法·边缘计算
wuk9986 小时前
使用PCA算法进行故障诊断的MATLAB仿真
算法·matlab
额呃呃6 小时前
二分查找细节理解
数据结构·算法
无尽的罚坐人生6 小时前
hot 100 283. 移动零
数据结构·算法·双指针
永远都不秃头的程序员(互关)6 小时前
C++动态数组实战:从手写到vector优化
c++·算法
水力魔方7 小时前
武理排水管网模拟分析系统应用专题5:模型克隆与并行计算
数据库·c++·算法·swmm
谈笑也风生8 小时前
经典算法题型之排序算法(三)
java·算法·排序算法
大佬,救命!!!9 小时前
对算子shape相关的属性值自动化处理
python·算法·自动化·学习笔记·算子·用例脚本·算子形状