新闻文章分类项目

注意:本文引用自专业人工智能社区Venus AI

更多AI知识请参考原站 ([www.aideeplearning.cn])

新闻文章分类模型比较项目报告

项目介绍

背景

新闻文章自动分类是自然语言处理和文本挖掘领域的一个重要任务。正确分类新闻文章不仅能帮助用户快速找到感兴趣的内容,还能提高信息检索系统的效率。

目的

本项目的目标是比较三种不同的机器学习算法 --- 朴素贝叶斯、决策树和支持向量机(SVM) --- 在新闻文章分类任务上的性能。使用的是scikit-learn中的20个新闻组数据集。

展示结果

准确率比较

  • 朴素贝叶斯 准确率: 0.77
  • 决策树 准确率: 0.55
  • SVM 准确率: 0.82

混淆矩阵

每个模型的混淆矩阵展示了在各个类别上的分类性能。

解决过程

数据预处理

  • 数据集:使用scikit-learn中的20个新闻组数据集。
  • 文本向量化:利用TF-IDF(Term Frequency-Inverse Document Frequency)方法将文本转换为数值向量。

模型构建和训练

  • 朴素贝叶斯:一个适用于文本分类的经典算法,特别是在数据集较小的情况下。
  • 决策树:易于理解和解释,但在文本分类中可能不如其他算法表现好。
  • 支持向量机(SVM):在各种文本分类任务中常表现出色,尤其是在高维数据上。

模型评估

  • 使用准确率作为主要评估指标。
  • 利用混淆矩阵详细分析每个模型在不同类别上的性能。

代码

详情代码请见

新闻文章分类项目-VenusAI (aideeplearning.cn)

结论

在本项目中,SVM在新闻文章分类任务上展现了最高的准确率,而朴素贝叶斯也表现出了相对较好的性能。决策树的准确率相对较低,可能因为其在处理高维稀疏数据时的局限性。这些发现表明,在选择合适的文本分类算法时,应考虑数据的特性和应用场景。

相关推荐
long3164 分钟前
弗洛伊德·沃肖算法 Floyd Warshall Algorithm
java·后端·算法·spring·springboot·图论
有一个好名字5 分钟前
力扣-咒语和药水的成功对数
java·算法·leetcode
Loo国昌10 分钟前
【LangChain1.0】第一篇:基础认知
后端·python·算法·语言模型·prompt
Loacnasfhia917 分钟前
使用YOLOv8-MultiSEAMHead实现电池自动检测系统 优化电池缺陷识别与分类 多类别电池检测模型训练与部署
yolo·目标跟踪·分类
H Corey19 分钟前
Java--面向对象之继承与多态
java·开发语言·windows·学习·算法·intellij-idea
永远都不秃头的程序员(互关)41 分钟前
【K-Means深度探索(三)】告别“初始陷阱”:K-Means++优化质心初始化全解析!
算法·机器学习·kmeans
程序员-King.1 小时前
day136—快慢指针—重排链表(LeetCode-143)
算法·leetcode·链表·快慢指针
万行1 小时前
差速两轮机器人位移与航向角增量计算
人工智能·python·算法·机器人
qq_336313931 小时前
java基础-多线程练习
java·开发语言·算法
不知名XL1 小时前
day25 贪心算法 part03
算法·贪心算法