【深度学习笔记】6_10 双向循环神经网络bi-rnn

注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图

6.10 双向循环神经网络

之前介绍的循环神经网络模型都是假设当前时间步是由前面的较早时间步的序列决定的,因此它们都将信息通过隐藏状态从前往后传递。有时候,当前时间步也可能由后面时间步决定。例如,当我们写下一个句子时,可能会根据句子后面的词来修改句子前面的用词。双向循环神经网络通过增加从后往前传递信息的隐藏层来更灵活地处理这类信息。图6.12演示了一个含单隐藏层的双向循环神经网络的架构。


图6.12 双向循环神经网络的架构

下面我们来介绍具体的定义。

给定时间步 t t t的小批量输入 X t ∈ R n × d \boldsymbol{X}_t \in \mathbb{R}^{n \times d} Xt∈Rn×d(样本数为 n n n,输入个数为 d d d)和隐藏层激活函数为 ϕ \phi ϕ。在双向循环神经网络的架构中,

设该时间步正向隐藏状态为 H → t ∈ R n × h \overrightarrow{\boldsymbol{H}}_t \in \mathbb{R}^{n \times h} H t∈Rn×h(正向隐藏单元个数为 h h h),

反向隐藏状态为 H ← t ∈ R n × h \overleftarrow{\boldsymbol{H}}_t \in \mathbb{R}^{n \times h} H t∈Rn×h(反向隐藏单元个数为 h h h)。我们可以分别计算正向隐藏状态和反向隐藏状态:

H → t = ϕ ( X t W x h ( f ) + H → t − 1 W h h ( f ) + b h ( f ) ) , H ← t = ϕ ( X t W x h ( b ) + H ← t + 1 W h h ( b ) + b h ( b ) ) , \begin{aligned} \overrightarrow{\boldsymbol{H}}t &= \phi(\boldsymbol{X}t \boldsymbol{W}{xh}^{(f)} + \overrightarrow{\boldsymbol{H}}{t-1} \boldsymbol{W}_{hh}^{(f)} + \boldsymbol{b}h^{(f)}),\\ \overleftarrow{\boldsymbol{H}}t &= \phi(\boldsymbol{X}t \boldsymbol{W}{xh}^{(b)} + \overleftarrow{\boldsymbol{H}}{t+1} \boldsymbol{W}{hh}^{(b)} + \boldsymbol{b}_h^{(b)}), \end{aligned} H tH t=ϕ(XtWxh(f)+H t−1Whh(f)+bh(f)),=ϕ(XtWxh(b)+H t+1Whh(b)+bh(b)),

其中权重 W x h ( f ) ∈ R d × h \boldsymbol{W}{xh}^{(f)} \in \mathbb{R}^{d \times h} Wxh(f)∈Rd×h、 W h h ( f ) ∈ R h × h \boldsymbol{W}{hh}^{(f)} \in \mathbb{R}^{h \times h} Whh(f)∈Rh×h、 W x h ( b ) ∈ R d × h \boldsymbol{W}{xh}^{(b)} \in \mathbb{R}^{d \times h} Wxh(b)∈Rd×h、 W h h ( b ) ∈ R h × h \boldsymbol{W}{hh}^{(b)} \in \mathbb{R}^{h \times h} Whh(b)∈Rh×h和偏差 b h ( f ) ∈ R 1 × h \boldsymbol{b}_h^{(f)} \in \mathbb{R}^{1 \times h} bh(f)∈R1×h、 b h ( b ) ∈ R 1 × h \boldsymbol{b}_h^{(b)} \in \mathbb{R}^{1 \times h} bh(b)∈R1×h均为模型参数。

然后我们连结两个方向的隐藏状态 H → t \overrightarrow{\boldsymbol{H}}_t H t和 H ← t \overleftarrow{\boldsymbol{H}}_t H t来得到隐藏状态 H t ∈ R n × 2 h \boldsymbol{H}_t \in \mathbb{R}^{n \times 2h} Ht∈Rn×2h,并将其输入到输出层。输出层计算输出 O t ∈ R n × q \boldsymbol{O}_t \in \mathbb{R}^{n \times q} Ot∈Rn×q(输出个数为 q q q):

O t = H t W h q + b q , \boldsymbol{O}_t = \boldsymbol{H}t \boldsymbol{W}{hq} + \boldsymbol{b}_q, Ot=HtWhq+bq,

其中权重 W h q ∈ R 2 h × q \boldsymbol{W}_{hq} \in \mathbb{R}^{2h \times q} Whq∈R2h×q和偏差 b q ∈ R 1 × q \boldsymbol{b}_q \in \mathbb{R}^{1 \times q} bq∈R1×q为输出层的模型参数。不同方向上的隐藏单元个数也可以不同。

小结

  • 双向循环神经网络在每个时间步的隐藏状态同时取决于该时间步之前和之后的子序列(包括当前时间步的输入)。

注:本节与原书基本相同,原书传送门

相关推荐
吴梓穆7 分钟前
UE5学习笔记 FPS游戏制作38 继承标准UI
笔记·学习·ue5
V---scwantop---信1 小时前
英文字体:大胆都市街头Y2Y涂鸦风格品牌海报专辑封面服装字体 Chrome TM – Graffiti Font
笔记·字体
Moonnnn.1 小时前
运算放大器(四)滤波电路(滤波器)
笔记·学习·硬件工程
吴梓穆2 小时前
UE5学习笔记 FPS游戏制作37 蓝图函数库 自己定义公共方法
笔记·学习·ue5
吴梓穆2 小时前
UE5学习笔记 FPS游戏制作41 世界模式显示UI
笔记·学习·ue5
牙牙要健康2 小时前
【目标检测】【深度学习】【Pytorch版本】YOLOV3模型算法详解
pytorch·深度学习·目标检测
Scc_hy2 小时前
强化学习_Paper_1988_Learning to predict by the methods of temporal differences
人工智能·深度学习·算法
s_little_monster3 小时前
【Linux】进程信号的捕捉处理
linux·运维·服务器·经验分享·笔记·学习·学习方法
誉鏐3 小时前
从零开始设计Transformer模型(1/2)——剥离RNN,保留Attention
人工智能·深度学习·transformer
神经星星3 小时前
无需预对齐即可消除批次效应,东京大学团队开发深度学习框架STAIG,揭示肿瘤微环境中的详细基因信息
人工智能·深度学习·机器学习