【深度学习笔记】6_10 双向循环神经网络bi-rnn

注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图

6.10 双向循环神经网络

之前介绍的循环神经网络模型都是假设当前时间步是由前面的较早时间步的序列决定的,因此它们都将信息通过隐藏状态从前往后传递。有时候,当前时间步也可能由后面时间步决定。例如,当我们写下一个句子时,可能会根据句子后面的词来修改句子前面的用词。双向循环神经网络通过增加从后往前传递信息的隐藏层来更灵活地处理这类信息。图6.12演示了一个含单隐藏层的双向循环神经网络的架构。


图6.12 双向循环神经网络的架构

下面我们来介绍具体的定义。

给定时间步 t t t的小批量输入 X t ∈ R n × d \boldsymbol{X}_t \in \mathbb{R}^{n \times d} Xt∈Rn×d(样本数为 n n n,输入个数为 d d d)和隐藏层激活函数为 ϕ \phi ϕ。在双向循环神经网络的架构中,

设该时间步正向隐藏状态为 H → t ∈ R n × h \overrightarrow{\boldsymbol{H}}_t \in \mathbb{R}^{n \times h} H t∈Rn×h(正向隐藏单元个数为 h h h),

反向隐藏状态为 H ← t ∈ R n × h \overleftarrow{\boldsymbol{H}}_t \in \mathbb{R}^{n \times h} H t∈Rn×h(反向隐藏单元个数为 h h h)。我们可以分别计算正向隐藏状态和反向隐藏状态:

H → t = ϕ ( X t W x h ( f ) + H → t − 1 W h h ( f ) + b h ( f ) ) , H ← t = ϕ ( X t W x h ( b ) + H ← t + 1 W h h ( b ) + b h ( b ) ) , \begin{aligned} \overrightarrow{\boldsymbol{H}}t &= \phi(\boldsymbol{X}t \boldsymbol{W}{xh}^{(f)} + \overrightarrow{\boldsymbol{H}}{t-1} \boldsymbol{W}_{hh}^{(f)} + \boldsymbol{b}h^{(f)}),\\ \overleftarrow{\boldsymbol{H}}t &= \phi(\boldsymbol{X}t \boldsymbol{W}{xh}^{(b)} + \overleftarrow{\boldsymbol{H}}{t+1} \boldsymbol{W}{hh}^{(b)} + \boldsymbol{b}_h^{(b)}), \end{aligned} H tH t=ϕ(XtWxh(f)+H t−1Whh(f)+bh(f)),=ϕ(XtWxh(b)+H t+1Whh(b)+bh(b)),

其中权重 W x h ( f ) ∈ R d × h \boldsymbol{W}{xh}^{(f)} \in \mathbb{R}^{d \times h} Wxh(f)∈Rd×h、 W h h ( f ) ∈ R h × h \boldsymbol{W}{hh}^{(f)} \in \mathbb{R}^{h \times h} Whh(f)∈Rh×h、 W x h ( b ) ∈ R d × h \boldsymbol{W}{xh}^{(b)} \in \mathbb{R}^{d \times h} Wxh(b)∈Rd×h、 W h h ( b ) ∈ R h × h \boldsymbol{W}{hh}^{(b)} \in \mathbb{R}^{h \times h} Whh(b)∈Rh×h和偏差 b h ( f ) ∈ R 1 × h \boldsymbol{b}_h^{(f)} \in \mathbb{R}^{1 \times h} bh(f)∈R1×h、 b h ( b ) ∈ R 1 × h \boldsymbol{b}_h^{(b)} \in \mathbb{R}^{1 \times h} bh(b)∈R1×h均为模型参数。

然后我们连结两个方向的隐藏状态 H → t \overrightarrow{\boldsymbol{H}}_t H t和 H ← t \overleftarrow{\boldsymbol{H}}_t H t来得到隐藏状态 H t ∈ R n × 2 h \boldsymbol{H}_t \in \mathbb{R}^{n \times 2h} Ht∈Rn×2h,并将其输入到输出层。输出层计算输出 O t ∈ R n × q \boldsymbol{O}_t \in \mathbb{R}^{n \times q} Ot∈Rn×q(输出个数为 q q q):

O t = H t W h q + b q , \boldsymbol{O}_t = \boldsymbol{H}t \boldsymbol{W}{hq} + \boldsymbol{b}_q, Ot=HtWhq+bq,

其中权重 W h q ∈ R 2 h × q \boldsymbol{W}_{hq} \in \mathbb{R}^{2h \times q} Whq∈R2h×q和偏差 b q ∈ R 1 × q \boldsymbol{b}_q \in \mathbb{R}^{1 \times q} bq∈R1×q为输出层的模型参数。不同方向上的隐藏单元个数也可以不同。

小结

  • 双向循环神经网络在每个时间步的隐藏状态同时取决于该时间步之前和之后的子序列(包括当前时间步的输入)。

注:本节与原书基本相同,原书传送门

相关推荐
AA陈超7 小时前
ASC学习笔记0020:用于定义角色或Actor的默认属性值
c++·笔记·学习·ue5·虚幻引擎
王哈哈^_^9 小时前
YOLO11实例分割训练任务——从构建数据集到训练的完整教程
人工智能·深度学习·算法·yolo·目标检测·机器学习·计算机视觉
IMPYLH9 小时前
Lua 的 collectgarbage 函数
开发语言·笔记·junit·单元测试·lua
SalvoGao9 小时前
Python学习 | 怎么理解epoch?
数据结构·人工智能·python·深度学习·学习
思成不止于此9 小时前
深入理解 C++ 多态:从概念到实现的完整解析
开发语言·c++·笔记·学习·多态·c++40周年
谅望者10 小时前
数据分析笔记08:Python编程基础-数据类型与变量
数据库·笔记·python·数据分析·概率论
studytosky11 小时前
深度学习理论与实战:Pytorch基础入门
人工智能·pytorch·python·深度学习·机器学习
iiiiii1111 小时前
【论文阅读笔记】多实例学习方法 Diverse Density(DD):在特征空间中寻找正概念的坐标
论文阅读·人工智能·笔记·机器学习·ai·学习方法·多实例学习
inputA11 小时前
【LwIP源码学习8】netbuf源码分析
android·c语言·笔记·嵌入式硬件·学习
JM丫11 小时前
内网理论知识总结
笔记·网络安全