-
线性dense网络结构,输入(B,W)
`class Model(nn.Module):
def init(self):
super().init()
self.media_type_embed = nn.Embedding(num_media_type, embed_dim)
self.mid_scroe_embed = nn.Embedding(num_mid_score, embed_dim)
#self.cat = torch.cat()
self.model = nn.Sequential(
nn.Linear(embed_dim*2, 256),
nn.ReLU(),
nn.Linear(256, 2),
#nn.Sigmoid(),
)def forward(self, x,): #print("x :",x.shape) [media_type,mid_score] = x x_media = self.media_type_embed(media_type) x_mid = self.mid_scroe_embed(mid_score) x = torch.cat((x_media, x_mid), -1) x = self.model(x) return x
model = Model()
model.to(device)`optimizer = torch.optim.Adam(model.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
2.conv1d卷积网络:输入(B,C,W)
import torch
import torch.nn as nn
# 定义一个一维卷积神经网络模型
class CNN1D(nn.Module):
def __init__(self, input_dim, output_dim):
super(CNN1D, self).__init__()
self.conv1 = nn.Conv1d(in_channels=1, out_channels=16, kernel_size=3)
self.conv2 = nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3)
self.pool = nn.MaxPool1d(kernel_size=2)
self.fc1 = nn.Linear(32 * 47, 64)
self.fc2 = nn.Linear(64, output_dim)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = x.view(-1, 32 * 47)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
return x
# 实例化模型并定义损失函数和优化器
model = CNN1D(input_dim=100, output_dim=10)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# 定义数据集并训练模型
for epoch in range(100):
for i, (inputs, labels) in enumerate(data_loader):
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()