简单的torch网络模型记录

  1. 线性dense网络结构,输入(B,W)
    `

    class Model(nn.Module):
    def init(self):
    super().init()
    self.media_type_embed = nn.Embedding(num_media_type, embed_dim)
    self.mid_scroe_embed = nn.Embedding(num_mid_score, embed_dim)
    #self.cat = torch.cat()
    self.model = nn.Sequential(
    nn.Linear(embed_dim*2, 256),
    nn.ReLU(),
    nn.Linear(256, 2),
    #nn.Sigmoid(),
    )

    复制代码
     def forward(self, x,):
         #print("x :",x.shape)
         [media_type,mid_score] = x
         x_media = self.media_type_embed(media_type)
         x_mid = self.mid_scroe_embed(mid_score)
         x = torch.cat((x_media, x_mid), -1)
         x = self.model(x)
         return x

    model = Model()
    model.to(device)`

    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    criterion = nn.CrossEntropyLoss()

2.conv1d卷积网络:输入(B,C,W)

复制代码
import torch
import torch.nn as nn

# 定义一个一维卷积神经网络模型
class CNN1D(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(CNN1D, self).__init__()
        self.conv1 = nn.Conv1d(in_channels=1, out_channels=16, kernel_size=3)
        self.conv2 = nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3)
        self.pool = nn.MaxPool1d(kernel_size=2)
        self.fc1 = nn.Linear(32 * 47, 64)
        self.fc2 = nn.Linear(64, output_dim)

    def forward(self, x):
        x = self.conv1(x)
        x = nn.functional.relu(x)
        x = self.pool(x)
        x = self.conv2(x)
        x = nn.functional.relu(x)
        x = self.pool(x)
        x = x.view(-1, 32 * 47)
        x = self.fc1(x)
        x = nn.functional.relu(x)
        x = self.fc2(x)
        return x

# 实例化模型并定义损失函数和优化器
model = CNN1D(input_dim=100, output_dim=10)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# 定义数据集并训练模型
for epoch in range(100):
    for i, (inputs, labels) in enumerate(data_loader):
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
相关推荐
灬0灬灬0灬1 小时前
深度学习---常用优化器
人工智能·深度学习
_Itachi__1 小时前
Model.eval() 与 torch.no_grad() PyTorch 中的区别与应用
人工智能·pytorch·python
BioRunYiXue2 小时前
一文了解氨基酸的分类、代谢和应用
人工智能·深度学习·算法·机器学习·分类·数据挖掘·代谢组学
Blossom.1185 小时前
低代码开发:开启软件开发的新篇章
人工智能·深度学习·安全·低代码·机器学习·计算机视觉·数据挖掘
机器学习之心6 小时前
SHAP分析!Transformer-GRU组合模型SHAP分析,模型可解释不在发愁!
深度学习·gru·transformer·shap分析
RK_Dangerous6 小时前
【深度学习】计算机视觉(18)——从应用到设计
人工智能·深度学习·计算机视觉
Stara05117 小时前
基于注意力机制与iRMB模块的YOLOv11改进模型—高效轻量目标检测新范式
人工智能·python·深度学习·神经网络·目标检测·计算机视觉·yolov11
X Y O7 小时前
神经网络初步学习——感知机
人工智能·神经网络·学习·感知机
scdifsn8 小时前
动手学深度学习12.4.硬件-笔记&练习(PyTorch)
pytorch·笔记·深度学习·缓存·内存·硬盘·深度学习硬件
知来者逆8 小时前
计算机视觉——MedSAM2医学影像一键实现3D与视频分割的高效解决方案
人工智能·深度学习·计算机视觉·图像分割·智能医疗·万物分割