pytorch升级打怪(二)

张量

简介

张量是一种专门的数据结构,与数组和矩阵非常相似。在PyTorch中,我们使用张量来编码模型的输入和输出,以及模型的参数。

张量与NumPy的ndarrays相似,只是张量可以在GPU或其他硬件加速器上运行。事实上,张量和NumPy数组通常可以共享相同的底层内存,无需复制数据(请参阅带有NumPy的桥接)。张量也针对自动分化进行了优化(我们稍后将在Autograd部分看到更多信息)。如果您熟悉ndarrays,您就可以在家使用Tensor API。如果没有,请跟随!

初始化张量

python 复制代码
import torch
import numpy as np

#直接来自数据
#张量可以直接从数据中创建。数据类型被自动推断。

data = [[1, 2],[3, 4]]
x_data = torch.tensor(data)

#从NumPy数组
#张量可以从NumPy数组创建(反之亦然-请参阅带有NumPy的桥接)。

np_array = np.array(data)
x_np = torch.from_numpy(np_array)

#来自另一个张量:
#新张量保留参数张量的属性(形状、数据类型),除非明确覆盖。

x_ones = torch.ones_like(x_data) # retains the properties of x_data
print(f"Ones Tensor: \n {x_ones} \n")

x_rand = torch.rand_like(x_data, dtype=torch.float) # overrides the datatype of x_data
print(f"Random Tensor: \n {x_rand} \n")
#随机或恒定值:
#shape是张量维度的元组。在下面的函数中,它决定了输出张量的维度。

shape = (2,3,)
rand_tensor = torch.rand(shape)
ones_tensor = torch.ones(shape)
zeros_tensor = torch.zeros(shape)

print(f"Random Tensor: \n {rand_tensor} \n")
print(f"Ones Tensor: \n {ones_tensor} \n")
print(f"Zeros Tensor: \n {zeros_tensor}")

张量的属性

张量属性描述它们的形状、数据类型以及存储它们的设备。

python 复制代码
tensor = torch.rand(3,4)

print(f"Shape of tensor: {tensor.shape}")
print(f"Datatype of tensor: {tensor.dtype}")
print(f"Device tensor is stored on: {tensor.device}")
shell 复制代码
Shape of tensor: torch.Size([3, 4])
Datatype of tensor: torch.float32
Device tensor is stored on: cpu

张量的操作

这里全面描述了100多个张量运算,包括算术、线性代数、矩阵操作(转位、索引、切片)、采样等。

这些操作中的每一个都可以在GPU上运行(通常速度比CPU快)。如果您使用的是Colab,请转到运行时>更改运行时类型>GPU来分配GPU。

默认情况下,张量是在CPU上创建的。我们需要使用.to方法(在检查GPU可用性后)明确地将张量移动到GPU。请记住,在设备之间复制大张量在时间和内存方面可能很昂贵!

python 复制代码
# We move our tensor to the GPU if available
if torch.cuda.is_available():
    tensor = tensor.to("cuda")

标准numpy样索引和切片

python 复制代码
tensor = torch.ones(4, 4)
print(f"First row: {tensor[0]}")
print(f"First column: {tensor[:, 0]}")
print(f"Last column: {tensor[..., -1]}")
tensor[:,1] = 0
print(tensor)
shell 复制代码
First row: tensor([1., 1., 1., 1.])
First column: tensor([1., 1., 1., 1.])
Last column: tensor([1., 1., 1., 1.])
tensor([[1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.]])

算术运算

python 复制代码
# This computes the matrix multiplication between two tensors. y1, y2, y3 will have the same value
# ``tensor.T`` returns the transpose of a tensor
y1 = tensor @ tensor.T
y2 = tensor.matmul(tensor.T)

y3 = torch.rand_like(y1)
torch.matmul(tensor, tensor.T, out=y3)


# This computes the element-wise product. z1, z2, z3 will have the same value
z1 = tensor * tensor
z2 = tensor.mul(tensor)

z3 = torch.rand_like(tensor)
torch.mul(tensor, tensor, out=z3)
shell 复制代码
tensor([[1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.]])

单元素张量 如果您有一个单元素张量,例如通过将张量的所有值聚合到一个值中,您可以使用item()将其转换为Python数值:

python 复制代码
agg = tensor.sum()
agg_item = agg.item()
print(agg_item, type(agg_item))
shell 复制代码
12.0 <class 'float'>

将结果存储到操作数中的就地操作称为就地操作。它们用一个_后缀表示。例如:x.copy_(y)x.t_()将更改x。

python 复制代码
print(f"{tensor} \n")
tensor.add_(5)
print(tensor)
shell 复制代码
tensor([[1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.]])

tensor([[6., 5., 6., 6.],
        [6., 5., 6., 6.],
        [6., 5., 6., 6.],
        [6., 5., 6., 6.]])

备注:就地操作可以节省一些内存,但在计算衍生品时可能会有问题,因为历史会立即丢失。因此,不鼓励使用它们。

与NumPy的桥梁

cpu和NumPy阵列上的张量可以共享其底层内存位置,更改一个将改变另一个

张量到NumPy数组

python 复制代码
t = torch.ones(5)
print(f"t: {t}")
n = t.numpy()
print(f"n: {n}")
shell 复制代码
t: tensor([1., 1., 1., 1., 1.])
n: [1. 1. 1. 1. 1.]

张量的变化反映在NumPy数组中。

python 复制代码
t.add_(1)
print(f"t: {t}")
print(f"n: {n}")
shell 复制代码
t: tensor([2., 2., 2., 2., 2.])
n: [2. 2. 2. 2. 2.]

NumPy阵列到张量

python 复制代码
n = np.ones(5)
t = torch.from_numpy(n)

NumPy数组的变化反映在张量中。

python 复制代码
np.add(n, 1, out=n)
print(f"t: {t}")
print(f"n: {n}")
shell 复制代码
t: tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
n: [2. 2. 2. 2. 2.]
相关推荐
果冻人工智能19 分钟前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工20 分钟前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
进击的六角龙21 分钟前
深入浅出:使用Python调用API实现智能天气预报
开发语言·python
檀越剑指大厂21 分钟前
【Python系列】浅析 Python 中的字典更新与应用场景
开发语言·python
石小石Orz22 分钟前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
湫ccc28 分钟前
Python简介以及解释器安装(保姆级教学)
开发语言·python
孤独且没人爱的纸鹤31 分钟前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭34 分钟前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~35 分钟前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
lzhlizihang37 分钟前
python如何使用spark操作hive
hive·python·spark