Python爬虫——scrapy-4

目录

免责声明

目标

过程

先修改配置文件

再修改pipelines.py

最后的结果是这样的

read.py

pipelines.py

items.py

settings.py

scrapy日志信息以及日志级别

settings.py文件设置

用百度实验一下

指定日志级别

WARNING

日志文件

注意

scrapy的post请求

简介

爬取百度翻译

总结


免责声明

本文章仅用于学习交流,无任何商业用途

目标

这次我们要学习把爬取到的数据存入数据库之中

过程

先修改配置文件

settings中添加下面的内容

复制代码
# todo 配置 mysql数据库
# 这里是我的阿里云地址,你填你mysql的地址
DB_HOST = 'xx.xx.xx.xx'
DB_PORT = 3306
DB_USER = 'root'
DB_PASSWORD = '12345678'
DB_NAME = 'spider01'
DB_CHARSET = 'utf-8'

再修改pipelines.py

添加下面的代码

python 复制代码
class MysqlPipeline:

    def process_item(self, item, spider):
        return item

再添加配置

复制代码
ITEM_PIPELINES = {
   "scrapy_readbook_090.pipelines.ScrapyReadbook090Pipeline": 300,
   # MysqlPipeline
   "scrapy_readbook_090.pipelines.MysqlPipeline": 301
}

。。。。

最后的结果是这样的

read.py

python 复制代码
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from scrapy_readbook_090.items import ScrapyReadbook090Item

class ReadSpider(CrawlSpider):
    name = "read"
    allowed_domains = ["www.dushu.com"]
    start_urls = ["https://www.dushu.com/book/1188_1.html"]

    rules = (Rule(LinkExtractor(allow=r"/book/1188_\d+\.html"),
                  callback="parse_item",
                  # true代表是否跟进
                  # 打开follow为true就会爬取全部网页
                  follow=True),)

    def parse_item(self, response):
        img_list = response.xpath('//div[@class="bookslist"]//img')
        for img in img_list:
            name = img.xpath('./@alt').extract_first()
            img_src = img.xpath('./@data-original').extract_first()

            book = ScrapyReadbook090Item(name=name, src=img_src)
            yield book

pipelines.py

python 复制代码
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html


# useful for handling different item types with a single interface
from itemadapter import ItemAdapter


class ScrapyReadbook090Pipeline:

    def open_spider(self, spider):
        self.fp = open('book.json', 'w', encoding='utf-8')

    def process_item(self, item, spider):
        self.fp.write(str(item))
        return item

    def close_spider(self, spider):
        self.fp.close()


# 加载settings文件
from scrapy.utils.project import get_project_settings
import pymysql


class MysqlPipeline:

    def open_spider(self, spider):
        settings = get_project_settings()

        self.host = settings['DB_HOST']
        self.port = settings['DB_PORT']
        self.user = settings['DB_USER']
        self.password = settings['DB_PASSWORD']
        self.name = settings['DB_NAME']
        self.charset = settings['DB_CHARSET']

        self.connect()

    def connect(self):
        self.conn = pymysql.connect(
            host=self.host,
            port=self.port,
            user=self.user,
            password=self.password,
            db=self.name,
            charset=self.charset
        )
        # 可执行sql语句
        self.cursor = self.conn.cursor()

    def process_item(self, item, spider):
        sql = 'insert into book2(name,src) values("{}","{}")'.format(item['name'], item['src'])
        # 执行SQL语句
        self.cursor.execute(sql)
        # 提交
        self.conn.commit()

        return item

    def close_spider(self, spider):
        self.cursor.close()
        self.conn.close()

items.py

python 复制代码
# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html

import scrapy


class ScrapyReadbook090Item(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    name = scrapy.Field()
    src = scrapy.Field()

settings.py

python 复制代码
# Scrapy settings for scrapy_readbook_090 project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     https://docs.scrapy.org/en/latest/topics/settings.html
#     https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#     https://docs.scrapy.org/en/latest/topics/spider-middleware.html

BOT_NAME = "scrapy_readbook_090"

SPIDER_MODULES = ["scrapy_readbook_090.spiders"]
NEWSPIDER_MODULE = "scrapy_readbook_090.spiders"


# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = "scrapy_readbook_090 (+http://www.yourdomain.com)"

# Obey robots.txt rules
ROBOTSTXT_OBEY = True

# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32

# Configure a delay for requests for the same website (default: 0)
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
#DOWNLOAD_DELAY = 3
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16

# Disable cookies (enabled by default)
#COOKIES_ENABLED = False

# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False

# Override the default request headers:
#DEFAULT_REQUEST_HEADERS = {
#    "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
#    "Accept-Language": "en",
#}

# Enable or disable spider middlewares
# See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
#    "scrapy_readbook_090.middlewares.ScrapyReadbook090SpiderMiddleware": 543,
#}

# Enable or disable downloader middlewares
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#DOWNLOADER_MIDDLEWARES = {
#    "scrapy_readbook_090.middlewares.ScrapyReadbook090DownloaderMiddleware": 543,
#}

# Enable or disable extensions
# See https://docs.scrapy.org/en/latest/topics/extensions.html
#EXTENSIONS = {
#    "scrapy.extensions.telnet.TelnetConsole": None,
#}

# todo 配置 mysql数据库
DB_HOST = '8.137.20.36'
# 端口号要是整形
DB_PORT = 3306
DB_USER = 'root'
DB_PASSWORD = '12345678'
DB_NAME = 'spider01'
# utf-8的 -  不要写
DB_CHARSET = 'utf8'

# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
   "scrapy_readbook_090.pipelines.ScrapyReadbook090Pipeline": 300,
   # MysqlPipeline
   "scrapy_readbook_090.pipelines.MysqlPipeline": 301
}

# Enable and configure the AutoThrottle extension (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False

# Enable and configure HTTP caching (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = "httpcache"
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = "scrapy.extensions.httpcache.FilesystemCacheStorage"

# Set settings whose default value is deprecated to a future-proof value
REQUEST_FINGERPRINTER_IMPLEMENTATION = "2.7"
TWISTED_REACTOR = "twisted.internet.asyncioreactor.AsyncioSelectorReactor"
FEED_EXPORT_ENCODING = "utf-8"

最后是找到了4000条数据

可能是io进服务器的顺序问题,军娃不是最后一个,但是一页40本书,一共100页也是没有一点毛病了。(* ^ ▽ ^ *)


scrapy日志信息以及日志级别

Scrapy是一个基于Python的网络爬虫框架,它提供了强大的日志功能。Scrapy的日志信息以及日志级别如下:

  1. DEBUG:调试级别,用于输出详细的调试信息,一般在开发和测试阶段使用。

  2. INFO:信息级别,用于输出一些重要的信息,如爬虫的启动信息、请求的URL等。

  3. WARNING:警告级别,用于输出一些不太严重的警告信息,如某个网页的解析出错,但不影响整个爬虫的执行。

  4. ERROR:错误级别,用于输出一些错误信息,如爬虫的配置出错、网络连接异常等。

  5. CRITICAL:严重级别,用于输出一些非常严重的错误信息,如爬虫的关键逻辑出错、无法连接到目标网站等。

默认的日志级别是DEBUG

Scrapy的日志信息可以在控制台中直接输出,也可以保存到文件中。可以通过设置Scrapy的配置文件或使用命令行参数来调整日志级别和输出方式。

以下是Scrapy的日志信息的示例:

2021-01-01 12:00:00 [scrapy.core.engine] INFO: Spider opened
2021-01-01 12:00:01 [scrapy.core.engine] DEBUG: Crawled 200 OK
2021-01-01 12:00:01 [scrapy.core.engine] DEBUG: Crawled 404 Not Found
2021-01-01 12:00:02 [scrapy.core.engine] WARNING: Ignoring response <404 Not Found>
2021-01-01 12:00:02 [scrapy.core.engine] DEBUG: Crawled 200 OK
2021-01-01 12:00:02 [scrapy.core.engine] ERROR: Spider error processing <GET http://example.com>: Error parsing HTML
2021-01-01 12:00:03 [scrapy.core.engine] DEBUG: Crawled 200 OK
2021-01-01 12:00:03 [scrapy.core.engine] INFO: Closing spider (finished)
2021-01-01 12:00:03 [scrapy.statscollectors] INFO: Dumping Scrapy stats

settings.py文件设置

默认的级别是DEBUG,会显示上面的所有信息

在配置文件中 settings.py

LOG_FILE : 将屏幕显示的信息全部记录到文件中,屏幕不再显示,注意文件后最有一定是 .log

LOG_LEVEL : 设置日志的等级,就是显示那些,不显示那些

用百度实验一下

先把 "君子协议" 撕碎

python 复制代码
# ROBOTSTXT_OBEY = True

指定日志级别

WARNING

在settings.py中添加下述代码

python 复制代码
# 指定日志的级别
LOG_LEVEL = 'WARNING'

==========是我在log.py中添加要打印的

就可以发现没有日志了

日志文件

我们先把上面配置的等级删除掉,再加上下述的代码

python 复制代码
# 日志文件
LOG_FILE = 'logDemo.log'

运行

世界依然清晰

但是日志已经存储在日志文件中了

注意

其实一般来说不要修改log的等级,如果报错也太难发现是什么问题了,所以一般为了控制台别打印那么多东西


scrapy的post请求

简介

在Scrapy中进行POST请求可以通过scrapy.FormRequest类来实现。下面是一个使用Scrapy进行POST请求的示例:

python 复制代码
import scrapy

class MySpider(scrapy.Spider):
    name = 'example.com'
    start_urls = ['http://www.example.com/login']

    def parse(self, response):
        # 提取登录页的csrf token
        csrf_token = response.css('input[name="csrf_token"]::attr(value)').get()

        # 构建POST请求的表单数据
        formdata = {
            'username': 'myusername',
            'password': 'mypassword',
            'csrf_token': csrf_token
        }

        # 发送POST请求
        yield scrapy.FormRequest(url='http://www.example.com/login', formdata=formdata, callback=self.after_login)

    def after_login(self, response):
        # 检查登录是否成功
        if response.url == 'http://www.example.com/home':
            self.log('Login successful')
            # 处理登录成功后的响应数据
            # ...
        else:
            self.log('Login failed')

在上面的示例中,首先在parse方法中抓取登录页,并提取登录页的csrf token。然后构建一个包含用户名、密码和csrf token的字典,作为formdata参数传递给FormRequest对象。最后使用yield关键字发送POST请求,并指定回调函数after_login来处理登录后的响应。

after_login方法中,可以根据响应的URL来判断登录是否成功。如果URL为登录后的首页URL,则登录成功,否则登录失败。可以在登录成功时做进一步的处理,如抓取用户信息,然后在控制台或日志中输出相应的信息。

需要注意的是,Scrapy的POST请求默认使用application/x-www-form-urlencoded方式来编码数据。如果需要发送JSON或其他类型的请求,可以通过设置headers参数来指定请求头,如:yield scrapy.FormRequest(url='http://www.example.com/login', formdata=formdata, headers={'Content-Type': 'application/json'}, callback=self.after_login)

另外,如果需要在POST请求中上传文件,可以使用scrapy.FormRequestfiles参数,将文件的路径作为值传递给表单字段。更多关于POST请求的用法和参数配置,请查阅Scrapy官方文档。

爬取百度翻译

只需要修改testpost.py这个自己创建的文件就行了

python 复制代码
import scrapy
import json

class TestpostSpider(scrapy.Spider):
    name = "testpost"
    allowed_domains = ["fanyi.baidu.com"]

    # post请求如果没有参数,那抹这个请求将没有任何的意义
    # 所以 start_urls 也是没有用
    # 而且 parse 方法也没有用了
    # 所以直接注释掉
    # TODO
    # start_urls = ["https://fanyi.baidu.com/sug"]
    #
    # def parse(self, response):
    #     print("==========================")

    # post请求就使用这个方法
    def start_requests(self):
        url = 'https://fanyi.baidu.com/sug'

        data = {
            'kw': 'final'
        }

        yield scrapy.FormRequest(url=url, formdata=data, callback=self.parse_second)

    def parse_second(self, response):
        content = response.text
        obj = json.loads(content, encoding='utf-8')
        print(obj)

总结

从2月29号,到今天3月9号,一共过去了十天,完成了爬虫的入门,从urllib到scrapy,这条路很长但是也很简单,中间的配置Python软件包的版本问题时常可以阻碍我的脚步,但是我都一一将他们解决,困难毕竟只是困难,人定胜天,我命由我不由天,加油!!!ヾ(◍°∇°◍)ノ゙

ヾ( ̄▽ ̄)Bye~Bye~

完结撒花

相关推荐
Cachel wood23 分钟前
python round四舍五入和decimal库精确四舍五入
java·linux·前端·数据库·vue.js·python·前端框架
終不似少年遊*29 分钟前
pyecharts
python·信息可视化·数据分析·学习笔记·pyecharts·使用技巧
Python之栈30 分钟前
【无标题】
数据库·python·mysql
袁袁袁袁满1 小时前
100天精通Python(爬虫篇)——第113天:‌爬虫基础模块之urllib详细教程大全
开发语言·爬虫·python·网络爬虫·爬虫实战·urllib·urllib模块教程
老大白菜1 小时前
Python 爬虫技术指南
python
古希腊掌管学习的神2 小时前
[搜广推]王树森推荐系统——矩阵补充&最近邻查找
python·算法·机器学习·矩阵
LucianaiB3 小时前
探索CSDN博客数据:使用Python爬虫技术
开发语言·爬虫·python
PieroPc5 小时前
Python 写的 智慧记 进销存 辅助 程序 导入导出 excel 可打印
开发语言·python·excel
梧桐树04299 小时前
python常用内建模块:collections
python
Dream_Snowar9 小时前
速通Python 第三节
开发语言·python