搜索与图论——DFS

深度优先搜索(DFS)

深搜的过程:从根进入,向下走,走到底,向上走,即绕树兜圈,最后从根退出

深搜的实现:深搜是通过系统栈实现的,因为栈满足先进后出的性质,所以当树的子树被全部搜完后才会回到该树。(后面的BFS使用队列实现的,因为队列满足先进先出的性质,适合于BFS的逐层遍历,这个在BFS文章中会提到。)DFS中递归调用的过程,系统自动通过栈去维护函数的状态空间。系统栈记录函数的返回地址,局部变量,参数传递等。向下走,压栈;向上走,弹栈。

深搜的模板

int dfs(int t)
{
    if(满足输出条件)
    {
        输出解;
    }
    else
    {
        for(int i=1;i<=尝试方法数;i++)
            if(满足进一步搜索条件)
            {
                为进一步搜索所需要的状态打上标记;
                bfs(t+1);
                恢复到打标记前的状态;//也就是说的{回溯一步}
            }
    }
}

多叉树的DFS简单模板。

深搜的计算:触碰节点的时机:1.入 2.下 3.回 4.离

void dfs(int u, int fa){
  // printf("进入%d\n",u);
  for(auto v : e[u]){
    if(v==fa) continue;
    // printf("下走%d\n",u);
    dfs(v, u);
    // printf("上回%d\n",u);
  } 
  // printf("离开%d\n",u);
}

同理二叉树触碰点的时机分为:先、中、后。在这三个触碰的时机进行操作也就是先序遍历,中序遍历和后序遍历

void dfs(int u, int fa){
    // printf("先%d\n",u);
    dfs(2 * u);
    // printf("中%d\n",u);
    dfs(2 * u + 1);
    // printf("后%d\n",u);    
}

Awing842

cpp 复制代码
#include<iostream>

using namespace std;

const int N = 10;

int path[N],n;

bool st[N];

void bfs(int u){
    if(u == n){
        for(int i = 0;i < n;i ++ ) cout << path[i] << " ";
        puts("");
        return;
    }
    
    for(int i = 1;i <= n;i ++ ){
        if(!st[i]){
            path[u] = i;
            st[i] = true;
            bfs(u + 1);
            st[i] = false; //恢复现场
        }
    }
}

int main(){
    cin >> n;
    bfs(0);
    return 0;
}

八皇后

cpp 复制代码
//第一种搜索顺序

#include<iostream>

using namespace std;

const int N = 10;

int n;
bool col[N],dg[2 * N],udg[2 * N];
char g[N][N];

void dfs(int u){
    if(u == n){
        for(int i = 0;i < n;i ++ ){
            for(int j = 0;j < n;j ++ ){
                cout << g[i][j];
            }
            puts("");
        }
        puts("");
        return;
    }
    for(int i = 0;i < n;i ++ ){
        if(!col[i] && !dg[u + i] && !udg[n - u + i]){
            g[u][i] = 'Q';
            col[i] = dg[u + i] = udg[n - u + i] = true;
            dfs(u + 1);
            col[i] = dg[u + i] = udg[n - u + i] = false;
            g[u][i] = '.';
        }
    }
}

int main(){
    cin >> n;
    for(int i = 0;i < n;i ++ ){
        for(int j = 0;j < n;j ++ ){
            g[i][j] = '.';
        }
    }
    dfs(0);
    return 0;
}


//第二种搜索顺序

#include<iostream>

using namespace std;

const int N = 110;

bool row[N],col[N],dg[N],udg[N];
char g[N][N];
int n;

void dfs(int x,int y,int s){
    if(s > n) return;
    if(y == n) y = 0,x ++ ;
    if(x == n){
        if(s == n){
            for(int i = 0;i < n;i ++ ){
                for(int j = 0;j < n;j ++ ){
                    cout << g[i][j];
                }
                puts("");
            }
            puts("");
        }
        return;
    }

    g[x][y] = '.';
    dfs(x,y + 1,s);

    if(!row[x] && !col[y] && !dg[x + y] && !udg[x - y + n]){
        g[x][y] = 'Q';
        row[x] = col[y] = dg[x + y] = udg[x - y + n] = true;
        dfs(x,y + 1,s + 1);
        row[x] = col[y] = dg[x + y] = udg[x - y + n] = false;
        g[x][y] = '.';
    }
}

int main(){
    cin >> n;
    dfs(0,0,0);
    return 0;
}
相关推荐
passer__jw76728 分钟前
【LeetCode】【算法】283. 移动零
数据结构·算法·leetcode
Ocean☾34 分钟前
前端基础-html-注册界面
前端·算法·html
顶呱呱程序42 分钟前
2-143 基于matlab-GUI的脉冲响应不变法实现音频滤波功能
算法·matlab·音视频·matlab-gui·音频滤波·脉冲响应不变法
Tianyanxiao1 小时前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售
爱吃生蚝的于勒1 小时前
深入学习指针(5)!!!!!!!!!!!!!!!
c语言·开发语言·数据结构·学习·计算机网络·算法
羊小猪~~1 小时前
数据结构C语言描述2(图文结合)--有头单链表,无头单链表(两种方法),链表反转、有序链表构建、排序等操作,考研可看
c语言·数据结构·c++·考研·算法·链表·visual studio
王哈哈^_^2 小时前
【数据集】【YOLO】【VOC】目标检测数据集,查找数据集,yolo目标检测算法详细实战训练步骤!
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·pyqt
星沁城2 小时前
240. 搜索二维矩阵 II
java·线性代数·算法·leetcode·矩阵
脉牛杂德2 小时前
多项式加法——C语言
数据结构·c++·算法
legend_jz2 小时前
STL--哈希
c++·算法·哈希算法