【个人开发】llama2部署实践(一)——基于CPU部署

1. Anaconda安装

shell 复制代码
mkdir -p /opt/anaconda
cd /opt/anaconda
# 参考链接:https://repo.anaconda.com/archive/index.html
wget https://repo.anaconda.com/archive/Anaconda3-2023.07-2-Linux-x86_64.sh
sh Anaconda3-2023.07-2-Linux-x86_64.sh

2.安装git

shell 复制代码
yum install git
yum install git-lfs # 安装依赖
git lfs install 

3.安装g++

shell 复制代码
yum install gcc-c++
## 升级版本,否则会报错
sudo yum install centos-release-scl
sudo yum install devtoolset-9-gcc*
scl enable devtoolset-9 bash

## 查看版本
gcc -v

4.llama2 安装

shell 复制代码
# 1.下载项目
git clone https://github.com/ggerganov/llama.cpp
pip3 install -r requirements.txt
make

# GPU编译方式。

## 2.获取 下载链接、下载模型 
#  注意代理节点跟所选地址的关系。
# https://llama.meta.com/llama-downloads/
git clone https://github.com/facebookresearch/llama.git

## 下载(输入邮箱链接)
./download.sh 
## 得到模型文件 llama-2-7b

# 3.文件转化
## 将llama中的文件tokenizer.model 复制到模型的位置 llama-2-7b,否则会报错
## Found vocab files: {'tokenizer.model': None, 'vocab.json': None, 'tokenizer.json': None}      FileNotFoundError: spm vocab not found.

## 模型转化
cd llama.cpp
mkdir -p models/7B/
mkdir -p models/13B/
python3 convert.py --outfile models/7B/ggml-model-f16.bin ../llama-2-7b/
python3 convert.py --outfile models/13B/ggml-model-f16.bin ../llama-2-13b/

python3 convert.py --outfile /data/opt/llama2_model/llama-2-7b-bin/ggml-model-f16.bin /data/opt/llama2_model/llama-2-7b


## 模型量化(q4_0为原始的量化)
./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.gguf q4_0
## 启动服务
./server -m ./models/7B/ggml-model-q4_0.gguf  -c 2048 -ngl 1 --host localhost --port 8080 
## 终端对话
./main -m ./models/7B/ggml-model-q4_0.gguf -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt 
## 服务调用
curl --request POST \
    --url http://localhost:8080/completion \
    --header "Content-Type: application/json" \
    --data '{"prompt": "Building a website can be done in 10 simple steps:","n_predict": 128}'

以上,End!

相关推荐
风筝超冷2 天前
LLaMA-Factory - 批量推理(inference)的脚本
llama
代码老y2 天前
基于springboot的图书管理系统的设计与实现
java·vue.js·spring boot·后端·毕业设计·课程设计·个人开发
bluebonnet273 天前
【agent开发】部署LLM(一)
python·llama
在线OJ的阿川3 天前
【大模型学习】项目练习:视频文本生成器
人工智能·python·学习·自然语言处理·个人开发
阿牛大牛中4 天前
LLaDa——基于 Diffusion 的大语言模型 打平 LLama 3
人工智能·语言模型·llama
Lilith的AI学习日记4 天前
【AI面试秘籍】| 第25期:RAG的关键痛点及解决方案深度解析
人工智能·深度学习·机器学习·chatgpt·aigc·llama
LChuck7 天前
【大模型微调】魔搭社区GPU进行LLaMA-Factory微调大模型自我认知
人工智能·语言模型·自然语言处理·nlp·llama·魔搭社区·modelscope
燕双嘤7 天前
Fine-tuning:微调技术,训练方式,LLaMA-Factory,ms-swift
llama
ONLYOFFICE7 天前
ONLYOFFICE文档API:编辑器的品牌定制化
编辑器·个人开发
装不满的克莱因瓶9 天前
【小白AI教程】大模型知识扫盲通识
人工智能·数学建模·ai·大模型·llm·llama·rag