模型的参数量、计算量、延时等的关系

模型的参数量、计算量、延时等的关系

基本概念

1.参数量:Params

2.计算量:FLOPs,Floating Point Operations,浮点运算次数,用来衡量模型计算复杂度。

3.延时:Latency

4.内存访问成本: MAC,memory access cost,存储模型所需的存储空间。

例如某个模型需要256000个浮点参数定义,转化为bit 乘以32得8192000bit,再除8转化为Byte,1024KB,也就是1M,那么这个模型大小约为1M。

5.乘加运算次数:MACs,multiply and accumulate operations,通常MACs=2FLOPs

6.每秒浮点运算次数:FLOPS,Floating Point Operations Per Second,是一个衡量硬件速度的指标。

7.每秒万亿次操作:TOPS,Tera Operations Per Second,1TOPS代表处理器每秒钟可进行一万亿次(10^12)操作,是处理器运算能力单位。

注意:区分FLOPs和FLOPS。

相互关系

1.相同 FLOPs 的两个模型,它们的延时可能会差很多。因为 FLOPs 只考虑模型总的计算量,而不考虑内存访问成本 (memory access cost, MAC) 和并行度 (degree of parallelism)。

2.在相同的 FLOPs 下,MAC 大的模型将具有更大的延时。

3.计算量有时候可以忽略,但是MAC却不能忽略。比如Add 或 Concat 的计算量可以忽略不计。

4.对于并行度而言,在相同的 FLOPs 下,具有高并行度的模型可能比另一个具有低并行度的模型快得多。

5.更高的 FLOPS可能 Params 会降低,比如当模型使用共享参数时。

代码计算

参数量Params:

复制代码
params = sum(p.numel() for p in model.parameters())
print(f"params: {params/(1000 * 1000):.4f} M")

计算量FLOPs:

复制代码
from thop import profile
flops, _ = profile(model, inputs=(image_tensor))
print("GFLOPs:", flops/(1000*1000*1000))

乘加运算次数MACs:

复制代码
from ptflops import get_model_complexity_info
macs, params = get_model_complexity_info(image_model, (3,224,224), as_strings=True, print_per_layer_stat=True)

打印模型结构:

复制代码
from torchsummary import summary
summary(image_model, input_size=(3, 224, 224))
相关推荐
我爱一条柴ya5 分钟前
【AI大模型】线性回归:经典算法的深度解析与实战指南
人工智能·python·算法·ai·ai编程
三维重建-光栅投影2 小时前
VS中将cuda项目编译为DLL并调用
算法
课堂剪切板4 小时前
ch03 部分题目思路
算法
山登绝顶我为峰 3(^v^)35 小时前
如何录制带备注的演示文稿(LaTex Beamer + Pympress)
c++·线性代数·算法·计算机·密码学·音视频·latex
Two_brushes.6 小时前
【算法】宽度优先遍历BFS
算法·leetcode·哈希算法·宽度优先
森焱森8 小时前
水下航行器外形分类详解
c语言·单片机·算法·架构·无人机
QuantumStack10 小时前
【C++ 真题】P1104 生日
开发语言·c++·算法
写个博客11 小时前
暑假算法日记第一天
算法
绿皮的猪猪侠11 小时前
算法笔记上机训练实战指南刷题
笔记·算法·pta·上机·浙大
hie9889411 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab