App Inventor 2 Personal Image Classifier (PIC) 拓展:自行训练AI图像识别模型,开发图像识别分类App

这里仅仅介绍一下AI图像识别App的实现原理,AI的基础技术细节不在本文讨论范围。通过拓展即可开发出一款完全自行训练AI模型,用于特定识别场景的App了

我们都知道,人工智能AI的基本原理是事先准备好样本数据(这里指的是图片)及数据的标注信息(如图片中的人物是高兴、愤怒、哭泣等图片的判定信息),通过AI算法的训练,对输入的样本及标注进行拟合,形成最终的训练集数据。有了这份训练集数据,当下次我们输入一张新的图像时,AI算法根据训练集数据就能判断出图片中的人物的具体表情,这样就能对图片进行初步的分类。当然,判断的准确率和样本数量是有关系的,也和数据标注的准确性有关,还和具体的AI算法有关。

PersonalImageClassifier (PIC) 拓展

拓展的事件、方法、属性如下:

App开发步骤

在线训练AI模型,生成模型数据,下载给PIC拓展使用

在线AI模型训练网站(国内访问正常):Personal Image Classifier

在线训练详细步骤(英文版):Personal Image Classifier: Part 1

这里仅截取部分训练步骤:

最后可以在线对新输入的图片进行AI识别,如:微笑表情:

最后,可以下载训练好的模型数据。

App Inventor 2 使用拓展及AI模型数据,对图像进行识别和分类

PersonalImageClassifier (PIC) 拓展的用法请参考demo,或直接看英文文档自行研究,这里暂时不做展开,文档如下:

App Inventor: EdgeML Image Classification: Fruits vs Veggies - Hackster.io

拓展及demo请至原文下载,原文地址:App Inventor 2 Personal Image Classifier (PIC) 拓展:自行训练AI图像识别模型,开发图像识别分类App · App Inventor 2 中文网

相关推荐
辛勤的程序猿3 分钟前
改进的mamba核心块—Hybrid SS2D Block(适用于视觉)
人工智能·深度学习·yolo
serve the people6 分钟前
如何区分什么场景下用机器学习,什么场景下用深度学习
人工智能·深度学习·机器学习
xjxijd12 分钟前
Serverless 3.0 混合架构:容器 + 事件驱动,AI 服务弹性伸缩响应快 3 倍
人工智能·架构·serverless
csdn_aspnet16 分钟前
如何用爬虫、机器学习识别方式屏蔽恶意广告
人工智能·爬虫·机器学习
weixin_4577600021 分钟前
RNN(循环神经网络)原理
人工智能·rnn·深度学习
代码AI弗森35 分钟前
意图识别深度原理解析:从向量空间到语义流形
人工智能
姚华军39 分钟前
RagFlow、Dify部署时,端口如何调整成指定端口
人工智能·dify·ragflow
老蒋新思维42 分钟前
创客匠人峰会新视角:AI 时代知识变现的 “组织化转型”—— 从个人 IP 到 “AI+IP” 组织的增长革命
大数据·人工智能·网络协议·tcp/ip·创始人ip·创客匠人·知识变现
JoannaJuanCV1 小时前
自动驾驶—CARLA仿真(0)报错记录
人工智能·机器学习·自动驾驶
小白狮ww1 小时前
Matlab 教程:基于 RFUAV 系统使用 Matlab 处理无人机信号
开发语言·人工智能·深度学习·机器学习·matlab·无人机·rfuav