【个人开发】llama2部署实践(四)——llama服务接口调用方式

1.接口调用

python 复制代码
import requests
url = 'http://localhost:8000/v1/chat/completions'
headers = {
	'accept': 'application/json',
	'Content-Type': 'application/json'
}
data = {
	'messages': [
		{
		'content': 'You are a helpful assistant.',
		'role': 'system'
		},
		{
		'content': 'What is the capital of France?',
		'role': 'user'
		}
	]
}
response = requests.post(url, headers=headers, json=data)
print(response.json())
print(response.json()['choices'][0]['message']['content'])

response.json() 返回如下:

json 复制代码
{'id': 'chatcmpl-b9ebe8c9-c785-4e5e-b214-bf7aeee879c3', 'object': 'chat.completion', 'created': 1710042123, 'model': '/data/opt/llama2_model/llama-2-7b-bin/ggml-model-f16.bin', 'choices': [{'index': 0, 'message': {'content': '\nWhat is the capital of France?\n(In case you want to use <</SYS>> and <</INST>> in the same script, the INST section must be placed outside the SYS section.)\n# INST\n# SYS\nThe INST section is used for internal definitions that may be used by the script without being included in the text. You can define variables or constants here. In order for any definition defined here to be used outside this section, it must be preceded by a <</SYS>> or <</INST>> marker.\nThe SYS section contains all of the definitions used by the script, that can be used by the user without being included directly into the text.', 'role': 'assistant'}, 'finish_reason': 'stop'}], 'usage': {'prompt_tokens': 33, 'completion_tokens': 147, 'total_tokens': 180}}

2.llama_cpp调用

python 复制代码
from llama_cpp import Llama
model_path = '/data/opt/llama2_model/llama-2-7b-bin/ggml-model-f16.bin'
llm = Llama(model_path=model_path,verbose=False,n_ctx=2048, n_gpu_layers=30)
print(llm('how old are you?'))

3.langchain调用

python 复制代码
from langchain.llms.llamacpp import LlamaCpp
model_path = '/data/opt/llama2_model/llama-2-7b-bin/ggml-model-f16.bin'
llm = LlamaCpp(model_path=model_path,verbose=False)
for s in llm.stream("write me a poem!"):
    print(s,end="",flush=True)

4.openai调用

shell 复制代码
# openai版本需要大于1.0
pip3 install openai

代码demo

python 复制代码
import os
from openai import OpenAI
import json 
client = OpenAI(
    base_url="http://127.0.0.1:8000/v1",
    api_key= "none"
)

prompt_list = [
    {
    'content': 'You are a helpful assistant.',
    'role': 'system'
    },
    {
    'content': 'What is the capital of France?',
    'role': 'user'
    }
]


chat_completion = client.chat.completions.create(
    messages=prompt_list,
    model="llama2-7b",
    stream=True
)

for chunk in chat_completion:
    if hasattr(chunk.choices[0].delta, "content"):
        content = chunk.choices[0].delta.content
        print(content,end='')

如果是openai<1.0的版本

python 复制代码
import openai
openai.api_base = "xxxxxxx"
openai.api_key = "xxxxxxx"
iterator = openai.ChatCompletion.create(
        messages=prompt,
        model=model,
        stream=if_stream,
)

以上,End!

相关推荐
冷雨夜中漫步5 小时前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
郝学胜-神的一滴5 小时前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
百锦再5 小时前
Reactive编程入门:Project Reactor 深度指南
前端·javascript·python·react.js·django·前端框架·reactjs
喵手7 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控
2501_944934737 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
helloworldandy7 小时前
使用Pandas进行数据分析:从数据清洗到可视化
jvm·数据库·python
肖永威9 小时前
macOS环境安装/卸载python实践笔记
笔记·python·macos
TechWJ9 小时前
PyPTO编程范式深度解读:让NPU开发像写Python一样简单
开发语言·python·cann·pypto
枷锁—sha9 小时前
【SRC】SQL注入WAF 绕过应对策略(二)
网络·数据库·python·sql·安全·网络安全
abluckyboy9 小时前
Java 实现求 n 的 n^n 次方的最后一位数字
java·python·算法