PyTorch学习笔记(一)

1.Tensor

1.1 构造一个5x3矩阵,不初始化

python 复制代码
x = torch.empty(5, 3)
print(x)

打印结果:

复制代码
tensor([[1.0102e-38, 1.0194e-38, 3.6736e-39],
        [8.3572e-39, 4.5918e-39, 4.5918e-39],
        [4.0408e-39, 4.5918e-39, 4.7755e-39],
        [8.5408e-39, 8.3571e-39, 4.5918e-39],
        [4.6837e-39, 4.0408e-39, 4.5918e-39]])

1.2 构造一个随机初始化的矩阵

python 复制代码
x = torch.rand(5, 3)
print(x)

打印结果:

复制代码
tensor([[0.1306, 0.2627, 0.1585],
        [0.8739, 0.0200, 0.4470],
        [0.6009, 0.5557, 0.1189],
        [0.5708, 0.4116, 0.6806],
        [0.0506, 0.6534, 0.2358]])

1.3 构造一个矩阵全为 0,而且数据类型是 long.

python 复制代码
x = torch.zeros(5, 3, dtype=torch.long)
print(x)

输出结果

复制代码
tensor([[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0]])

1.4 直接使用数据构造一个张量

python 复制代码
x = torch.tensor([5.5, 3])
print(x)

输出结果

复制代码
tensor([5.5000, 3.0000])

1.5 创建一个 tensor 基于已经存在的 tensor

python 复制代码
x = tensor([5.5000, 3.0000])
x = x.new_ones(5, 3, dtype=torch.double)
print(x)

输出结果

复制代码
tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]], dtype=torch.float64)
python 复制代码
x = torch.rand_like(x, dtype=torch.float)
print(x)

输出结果

复制代码
tensor([[0.0996, 0.3518, 0.2875],
        [0.2665, 0.5578, 0.1388],
        [0.3313, 0.8641, 0.5232],
        [0.8819, 0.6924, 0.9274],
        [0.8298, 0.4196, 0.1312]])

size

python 复制代码
print(x.size())
相关推荐
Norvyn_73 分钟前
LeetCode|Day18|20. 有效的括号|Python刷题笔记
笔记·python·leetcode
Y4090011 小时前
C语言转Java语言,相同与相异之处
java·c语言·开发语言·笔记
笑衬人心。1 小时前
TCP 拥塞控制算法 —— 慢启动(Slow Start)笔记
笔记·tcp/ip·php
花海如潮淹1 小时前
前端性能追踪工具:用户体验的毫秒战争
前端·笔记·ux
Andy杨2 小时前
20250718-5-Kubernetes 调度-Pod对象:重启策略+健康检查_笔记
笔记·容器·kubernetes
石迹耿千秋6 小时前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习
杭州杭州杭州8 小时前
Python笔记
开发语言·笔记·python
iFulling11 小时前
【计算机网络】第四章:网络层(上)
学习·计算机网络
香蕉可乐荷包蛋11 小时前
AI算法之图像识别与分类
人工智能·学习·算法