PyTorch学习笔记(一)

1.Tensor

1.1 构造一个5x3矩阵,不初始化

python 复制代码
x = torch.empty(5, 3)
print(x)

打印结果:

tensor([[1.0102e-38, 1.0194e-38, 3.6736e-39],
        [8.3572e-39, 4.5918e-39, 4.5918e-39],
        [4.0408e-39, 4.5918e-39, 4.7755e-39],
        [8.5408e-39, 8.3571e-39, 4.5918e-39],
        [4.6837e-39, 4.0408e-39, 4.5918e-39]])

1.2 构造一个随机初始化的矩阵

python 复制代码
x = torch.rand(5, 3)
print(x)

打印结果:

tensor([[0.1306, 0.2627, 0.1585],
        [0.8739, 0.0200, 0.4470],
        [0.6009, 0.5557, 0.1189],
        [0.5708, 0.4116, 0.6806],
        [0.0506, 0.6534, 0.2358]])

1.3 构造一个矩阵全为 0,而且数据类型是 long.

python 复制代码
x = torch.zeros(5, 3, dtype=torch.long)
print(x)

输出结果

tensor([[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0]])

1.4 直接使用数据构造一个张量

python 复制代码
x = torch.tensor([5.5, 3])
print(x)

输出结果

tensor([5.5000, 3.0000])

1.5 创建一个 tensor 基于已经存在的 tensor

python 复制代码
x = tensor([5.5000, 3.0000])
x = x.new_ones(5, 3, dtype=torch.double)
print(x)

输出结果

tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]], dtype=torch.float64)
python 复制代码
x = torch.rand_like(x, dtype=torch.float)
print(x)

输出结果

tensor([[0.0996, 0.3518, 0.2875],
        [0.2665, 0.5578, 0.1388],
        [0.3313, 0.8641, 0.5232],
        [0.8819, 0.6924, 0.9274],
        [0.8298, 0.4196, 0.1312]])

size

python 复制代码
print(x.size())
相关推荐
Jackilina_Stone3 小时前
【论文阅读笔记】SCI算法与代码 | 低照度图像增强 | 2022.4.21
论文阅读·人工智能·笔记·python·算法·计算机视觉
Miqiuha3 小时前
建造者设计模式学习
学习·设计模式
mit6.8243 小时前
[Qt] Qt介绍 | 搭建SDK
linux·c++·qt·学习
宇寒风暖3 小时前
软件工程期末复习(一)
笔记·学习·软件工程
sensen_kiss3 小时前
CPT203 Software Engineering 软件工程 Pt.6 软件管理(中英双语)
学习·软件工程
多恩Stone4 小时前
【Domain Generalization(1)】增量学习/在线学习/持续学习/迁移学习/多任务学习/元学习/领域适应/领域泛化概念理解
人工智能·学习·迁移学习
阿正的梦工坊4 小时前
如何在梯度计算中处理bf16精度损失:混合精度训练中的误差分析
人工智能·pytorch·llm
hao_wujing4 小时前
GPU 进阶笔记(四):NVIDIA GH200 芯片、服务器及集群组网
运维·服务器·笔记
1101 11015 小时前
STM32-笔记23-超声波传感器HC-SR04
笔记·stm32·嵌入式硬件
IT古董6 小时前
【机器学习】机器学习的基本分类-自监督学习-对比学习(Contrastive Learning)
人工智能·学习·机器学习·分类