PyTorch学习笔记(一)

1.Tensor

1.1 构造一个5x3矩阵,不初始化

python 复制代码
x = torch.empty(5, 3)
print(x)

打印结果:

复制代码
tensor([[1.0102e-38, 1.0194e-38, 3.6736e-39],
        [8.3572e-39, 4.5918e-39, 4.5918e-39],
        [4.0408e-39, 4.5918e-39, 4.7755e-39],
        [8.5408e-39, 8.3571e-39, 4.5918e-39],
        [4.6837e-39, 4.0408e-39, 4.5918e-39]])

1.2 构造一个随机初始化的矩阵

python 复制代码
x = torch.rand(5, 3)
print(x)

打印结果:

复制代码
tensor([[0.1306, 0.2627, 0.1585],
        [0.8739, 0.0200, 0.4470],
        [0.6009, 0.5557, 0.1189],
        [0.5708, 0.4116, 0.6806],
        [0.0506, 0.6534, 0.2358]])

1.3 构造一个矩阵全为 0,而且数据类型是 long.

python 复制代码
x = torch.zeros(5, 3, dtype=torch.long)
print(x)

输出结果

复制代码
tensor([[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0]])

1.4 直接使用数据构造一个张量

python 复制代码
x = torch.tensor([5.5, 3])
print(x)

输出结果

复制代码
tensor([5.5000, 3.0000])

1.5 创建一个 tensor 基于已经存在的 tensor

python 复制代码
x = tensor([5.5000, 3.0000])
x = x.new_ones(5, 3, dtype=torch.double)
print(x)

输出结果

复制代码
tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]], dtype=torch.float64)
python 复制代码
x = torch.rand_like(x, dtype=torch.float)
print(x)

输出结果

复制代码
tensor([[0.0996, 0.3518, 0.2875],
        [0.2665, 0.5578, 0.1388],
        [0.3313, 0.8641, 0.5232],
        [0.8819, 0.6924, 0.9274],
        [0.8298, 0.4196, 0.1312]])

size

python 复制代码
print(x.size())
相关推荐
三水不滴7 分钟前
有 HTTP 了为什么还要有 RPC?
经验分享·笔记·网络协议·计算机网络·http·rpc
久邦科技17 分钟前
奈飞工厂中文官网入口,影视在线观看|打不开|电脑版下载
学习
三块可乐两块冰26 分钟前
【第二十九周】机器学习笔记三十
笔记
好好学习天天向上~~33 分钟前
6_Linux学习总结_自动化构建
linux·学习·自动化
听麟1 小时前
HarmonyOS 6.0+ 跨端智慧政务服务平台开发实战:多端协同办理与电子证照管理落地
笔记·华为·wpf·音视频·harmonyos·政务
非凡ghost2 小时前
PowerDirector安卓版(威力导演安卓版)
android·windows·学习·软件需求
risc1234562 小时前
认识一个事物,需要哪些基本能力与要素?
笔记
代码游侠2 小时前
C语言核心概念复习——C语言基础阶段
linux·开发语言·c++·学习
dingdingfish2 小时前
Bash学习 - 第3章:Basic Shell Features,第5节:Shell Expansions
开发语言·学习·bash
firewood20242 小时前
共射三极管放大电路相关情况分析
笔记·学习