OpenCV-图像基础处理

目录

[1 彩色(RGB)图像](#1 彩色(RGB)图像)

[2 灰度图像](#2 灰度图像)

[3 黑白图像](#3 黑白图像)


1 彩色(RGB)图像

  • 使用cv2.imread()函数加载RGB图像;
  • 使用cv2.split()函数分割颜色通道;
  • 将BGR颜色格式转换成RGB颜色格式;
  • 使用matplotlib或cv2.imshow()函数可视化图像。
python 复制代码
import cv2
from matplotlib import pyplot as plt
import numpy as np

# 加载RGB图片
img_OpenCV = cv2.imread(r"demo.jpeg")
print(type(img_OpenCV), img_OpenCV.shape)  # <class 'numpy.ndarray'> (484, 515, 3)

# 分割颜色通道,opencv使用BGR颜色格式
b, g, r = cv2.split(img_OpenCV)
# imread()方法返回ndarray对象,因此也可以使用切片分割颜色通道
B = img_OpenCV[:, :, 0]
G = img_OpenCV[:, :, 1]
R = img_OpenCV[:, :, 2]
print((b == B).all(), (g == G).all(), (r == R).all())  # True True True

# 转换成RGB颜色格式
img_matplotlib = cv2.merge([r, g, b])
img_ndarray = img_OpenCV[:, :, ::-1]
print((img_matplotlib == img_ndarray).all())  # True

# 使用matplotlib可视化图片
plt.subplot(121)
plt.imshow(img_OpenCV)
plt.subplot(122)
plt.imshow(img_matplotlib)
# plt.show()

# 使用opencv可视化图片
cv2.imshow('BGR image', img_OpenCV)
cv2.imshow('RGB image', img_matplotlib)
# 拼接图片
img_connect = np.concatenate((img_OpenCV, img_matplotlib), axis=1)
cv2.imshow('BGR image-RGB image', img_connect)

cv2.waitKey(0)  # 等待键盘动作
cv2.destroyAllWindows()  # 关闭窗口

2 灰度图像

  • 使用cv2.imread()函数加载灰度图像;
  • 图像切片。
python 复制代码
import cv2

# 加载灰度图片
img_OpenCV = cv2.imread(r"demo.png", cv2.IMREAD_GRAYSCALE)
print(type(img_OpenCV), img_OpenCV.shape)  # <class 'numpy.ndarray'> (484, 515)
cv2.imshow('BGR image', img_OpenCV)

# 图片切片
img_split = img_OpenCV[100:200, 250:350]
cv2.imshow("BGR image", img_split)

cv2.waitKey(0)  # 等待键盘动作
cv2.destroyAllWindows()  # 关闭窗口

3 黑白图像

  • 将灰度图像转换成黑白图像;
  • 使用cv2.threshold()函数二值化图像;
  • 使用cv2.adaptiveThreshold()函数二值化图像。
python 复制代码
"""
@Title: Black And White
@Time: 2024/3/13
@Author: Michael Jie
"""

import cv2

# 加载灰度图片
img_OpenCV = cv2.imread(r"demo.png", cv2.IMREAD_GRAYSCALE)
print(type(img_OpenCV), img_OpenCV.shape)  # <class 'numpy.ndarray'> (484, 515)
print(img_OpenCV)

# 二值化图像
ret, img_binary = cv2.threshold(
    # 图像
    img_OpenCV,
    # 阈值
    thresh=200,
    # 填充色
    maxval=255,
    # 填充类型
    type=cv2.THRESH_BINARY  # 小于阈值置0,大于阈值置填充色
)
cv2.imshow('BlackAndWhite image', img_binary)

# 自适应阈值
img_binary1 = cv2.adaptiveThreshold(
    # 图像
    img_OpenCV,
    # 填充色
    maxValue=255,
    # 填充类型
    adaptiveMethod=cv2.ADAPTIVE_THRESH_MEAN_C,
    # 二值化方法,计算阈值
    thresholdType=cv2.THRESH_BINARY,
    # 邻域大小,奇数
    blockSize=11,
    # 从计算的平均值或加权平均值中减去常数
    C=8
)
cv2.imshow('BlackAndWhite image1', img_binary1)

cv2.waitKey(0)  # 等待键盘动作
cv2.destroyAllWindows()  # 关闭窗口

"""
阈值类型	            小于等于阈值	大于阈值
THRESH_BINARY	    0	        maxval
THRESH_BINARY_INV	maxval	    0
THRESH_TRUNC	    保持原样	    thresh
THRESH_TOZERO	    0	        保持原样
THRESH_TOZERO_INV	保持原样	    0
"""

"""
二值化方法
ADAPTIVE_THRESH_MEAN_C      邻域的平均值
ADAPTIVE_THRESH_GAUSSIAN_C  邻域值的加权和
"""
相关推荐
Python大数据分析@18 分钟前
python操作CSV和excel,如何来做?
开发语言·python·excel
黑叶白树19 分钟前
简单的签到程序 python笔记
笔记·python
Shy96041832 分钟前
Bert完形填空
python·深度学习·bert
上海_彭彭43 分钟前
【提效工具开发】Python功能模块执行和 SQL 执行 需求整理
开发语言·python·sql·测试工具·element
zhongcx011 小时前
使用Python查找大文件的实用脚本
python
yyfhq2 小时前
sdnet
python
测试19982 小时前
2024软件测试面试热点问题
自动化测试·软件测试·python·测试工具·面试·职场和发展·压力测试
love_and_hope2 小时前
Pytorch学习--神经网络--搭建小实战(手撕CIFAR 10 model structure)和 Sequential 的使用
人工智能·pytorch·python·深度学习·学习
海阔天空_20132 小时前
Python pyautogui库:自动化操作的强大工具
运维·开发语言·python·青少年编程·自动化
零意@3 小时前
ubuntu切换不同版本的python
windows·python·ubuntu