论文阅读——RemoteCLIP

RemoteCLIP: A Vision Language Foundation Model for Remote Sensing

摘要------通用基础模型在人工智能领域变得越来越重要。虽然自监督学习(SSL)和掩蔽图像建模(MIM)在构建此类遥感基础模型方面取得了有希望的结果,但这些模型主要学习低级别特征,需要注释数据进行微调,并且由于缺乏语言理解,不适用于检索和零样本应用。为了应对这些限制,我们提出了RemoteCLIP,这是第一个用于遥感的视觉语言基础模型,旨在学习具有丰富语义的健壮视觉特征,以及用于无缝下游应用的对齐文本嵌入。为了解决预训练数据的稀缺性,我们利用数据缩放,基于Box-To-Caption(B2C)和Mask-To-Box(M2B)转换转换异构注释,并进一步合并无人机图像,生成12倍大的预训练数据集。RemoteCLIP可应用于各种下游任务,包括零样本图像分类、线性探测、k-NN分类、少拍摄分类、图像-文本检索和对象计数。对16个数据集的评估,包括新引入的用于测试对象计数能力的RemoteCount基准测试,表明Remote CLIP在不同的模型规模上始终优于基线基础模型。令人印象深刻的是,RemoteCLIP在RSICD数据集上的平均召回率比以前的SoTA高9.14%,在RSICD数据集上高8.92%。对于零样本分类,我们的RemoteCLIP在12个下游数据集上的平均准确率高达6.39%,优于CLIP基线

主要介绍数据集生成过程。

框到文本描述(B2C)生成允许基于边界框注释和标签生成对象检测数据集的文本描述。

该方法采用基于规则的方法来生成描述图像中对象的五个不同的字幕,算法1概述了B2C方法。具体来说,前两个字幕是根据目标位置(边界框的中心点)生成的:第一个字幕描述图像中心的对象,而第二个字幕描述不位于中心的对象。这种区分提供了关于图像内对象的空间分布的附加上下文和信息。剩下的三个字幕是通过考虑图像中存在的不同对象类别的数量而生成的。将从边界框注释列表中选择随机对象,并相应地生成标题。如果一个对象的出现次数超过10次,则使用更通用的术语(例如"很多"、"很多")而不是确切的数字,以增强标题的可读性和可变性。

也有mask到框,再框到描述。

相关推荐
大数据追光猿13 分钟前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
灵感素材坊1 小时前
解锁音乐创作新技能:AI音乐网站的正确使用方式
人工智能·经验分享·音视频
xinxiyinhe2 小时前
如何设置Cursor中.cursorrules文件
人工智能·python
AI服务老曹2 小时前
运用先进的智能算法和优化模型,进行科学合理调度的智慧园区开源了
运维·人工智能·安全·开源·音视频
alphaAIstack2 小时前
大语言模型推理能力从何而来?
人工智能·语言模型·自然语言处理
zenRRan2 小时前
Qwen2.5-VL Technical Report!!! 操作手机电脑、解析化学公式和乐谱、剪辑电影等,妥妥六边形战士 !...
人工智能
冒泡的肥皂2 小时前
DeepSeek+Dify打造数据库查询专家
人工智能
让我安静会3 小时前
Obsidian·Copilot 插件配置(让AI根据Obsidian笔记内容进行对话)
人工智能·笔记·copilot
Allen_LVyingbo3 小时前
Scrum方法论指导下的Deepseek R1医疗AI部署开发
人工智能·健康医疗·scrum
Watermelo6173 小时前
从DeepSeek大爆发看AI革命困局:大模型如何突破算力囚笼与信任危机?
人工智能·深度学习·神经网络·机器学习·ai·语言模型·自然语言处理