Spark 之ExecutorLostFailure in Apache Spark

错误日志ExecutorLostFailure (executor 34 exited unrelated to the running tasks) Reason: Container container_XXX on host: XXX was preempted.

1. 解释 ExecutorLostFailure
  • Executor丢失 : ExecutorLostFailure是一个在Apache Spark集群运行时可能遇到的错误。它表明一个执行器(Executor)已经丢失,通常是由于底层资源管理器的决策或错误导致。
2. 错误原因分析
  • 容器被抢占: 根据提供的错误信息,执行器丢失的原因是容器Container container_XXX在主机XXX上被抢占(preempted)。抢占通常发生在资源管理器(如YARN)需要释放资源给更高优先级的任务时。
3. 解决和预防措施
  • 资源分配: 考虑在提交Spark作业时分配更多的资源,或者设置更高的优先级,以减少被抢占的可能性。
  • 重试策略: 确保Spark作业配置了合适的重试机制,使得当执行器丢失时,作业可以恢复执行。
  • 集群管理: 了解集群的资源管理策略,以便更好地调整作业配置,避免未来的执行器丢失。
  • 监控和日志: 监控集群的状态和资源使用情况,查看详细的日志以确定是否存在其他潜在问题导致执行器丢失。
  • 独立集群或队列:申请独立集群或队列,且给出相应的固定配额。
注意
  • 底层资源管理 : ExecutorLostFailure是由于底层资源管理器的行为导致的,因此解决这个问题需要对资源管理器的配置和行为有一定的理解。
  • 作业配置: 合理配置Spark作业的资源请求,可以减少因资源不足导致的执行器丢失问题。

ExecutorLostFailure是分布式计算环境中常见的问题,理解其原因和采取适当的预防措施是确保Spark作业稳定运行的关键。

相关推荐
阿里云大数据AI技术10 小时前
大数据公有云市场第一,阿里云占比47%!
大数据
Lx35214 小时前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop
计算机毕业设计木哥18 小时前
计算机毕设选题推荐:基于Java+SpringBoot物品租赁管理系统【源码+文档+调试】
java·vue.js·spring boot·mysql·spark·毕业设计·课程设计
T062051419 小时前
工具变量-5G试点城市DID数据(2014-2025年
大数据
是Dream呀19 小时前
时序数据库选型指南:Apache IoTDB企业级解决方案深度解析
apache·时序数据库·iotdb
一个天蝎座 白勺 程序猿19 小时前
Apache IoTDB(5):深度解析时序数据库 IoTDB 在 AINode 模式单机和集群的部署与实践
数据库·apache·时序数据库·iotdb·ainode
向往鹰的翱翔19 小时前
BKY莱德因:5大黑科技逆转时光
大数据·人工智能·科技·生活·健康医疗
鸿乃江边鸟20 小时前
向量化和列式存储
大数据·sql·向量化
IT毕设梦工厂21 小时前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
java水泥工21 小时前
基于Echarts+HTML5可视化数据大屏展示-白茶大数据溯源平台V2
大数据·echarts·html5