Spark 之ExecutorLostFailure in Apache Spark

错误日志ExecutorLostFailure (executor 34 exited unrelated to the running tasks) Reason: Container container_XXX on host: XXX was preempted.

1. 解释 ExecutorLostFailure
  • Executor丢失 : ExecutorLostFailure是一个在Apache Spark集群运行时可能遇到的错误。它表明一个执行器(Executor)已经丢失,通常是由于底层资源管理器的决策或错误导致。
2. 错误原因分析
  • 容器被抢占: 根据提供的错误信息,执行器丢失的原因是容器Container container_XXX在主机XXX上被抢占(preempted)。抢占通常发生在资源管理器(如YARN)需要释放资源给更高优先级的任务时。
3. 解决和预防措施
  • 资源分配: 考虑在提交Spark作业时分配更多的资源,或者设置更高的优先级,以减少被抢占的可能性。
  • 重试策略: 确保Spark作业配置了合适的重试机制,使得当执行器丢失时,作业可以恢复执行。
  • 集群管理: 了解集群的资源管理策略,以便更好地调整作业配置,避免未来的执行器丢失。
  • 监控和日志: 监控集群的状态和资源使用情况,查看详细的日志以确定是否存在其他潜在问题导致执行器丢失。
  • 独立集群或队列:申请独立集群或队列,且给出相应的固定配额。
注意
  • 底层资源管理 : ExecutorLostFailure是由于底层资源管理器的行为导致的,因此解决这个问题需要对资源管理器的配置和行为有一定的理解。
  • 作业配置: 合理配置Spark作业的资源请求,可以减少因资源不足导致的执行器丢失问题。

ExecutorLostFailure是分布式计算环境中常见的问题,理解其原因和采取适当的预防措施是确保Spark作业稳定运行的关键。

相关推荐
Lethehong1 天前
探索高效工作流的秘密:GLM-4.7 与 Dify 平台深度集成实践
大数据·人工智能·算法
大鳥1 天前
第一章 - 数据仓库是什么
大数据·数据库·hive
小宇的天下1 天前
Cadence allegro---assign net
服务器·php·apache
uesowys1 天前
Apache Spark算法开发指导-Random forest classifier
算法·随机森林·spark
TM1Club1 天前
AI驱动的预测:新的竞争优势
大数据·人工智能·经验分享·金融·数据分析·自动化
zhang133830890751 天前
CG-09H 超声波风速风向传感器 加热型 ABS材质 重量轻 没有机械部件
大数据·运维·网络·人工智能·自动化
电商API_180079052471 天前
第三方淘宝商品详情 API 全维度调用指南:从技术对接到生产落地
java·大数据·前端·数据库·人工智能·网络爬虫
龙山云仓1 天前
No140:AI世间故事-对话康德——先验哲学与AI理性:范畴、道德律与自主性
大数据·人工智能·深度学习·机器学习·全文检索·lucene
躺柒2 天前
读数字时代的网络风险管理:策略、计划与执行04风险指引体系
大数据·网络·信息安全·数字化·网络管理·网络风险管理
独自归家的兔2 天前
从 “局部凑活“ 到 “全局最优“:AI 规划能力的技术突破与产业落地实践
大数据·人工智能