Spark 之ExecutorLostFailure in Apache Spark

错误日志ExecutorLostFailure (executor 34 exited unrelated to the running tasks) Reason: Container container_XXX on host: XXX was preempted.

1. 解释 ExecutorLostFailure
  • Executor丢失 : ExecutorLostFailure是一个在Apache Spark集群运行时可能遇到的错误。它表明一个执行器(Executor)已经丢失,通常是由于底层资源管理器的决策或错误导致。
2. 错误原因分析
  • 容器被抢占: 根据提供的错误信息,执行器丢失的原因是容器Container container_XXX在主机XXX上被抢占(preempted)。抢占通常发生在资源管理器(如YARN)需要释放资源给更高优先级的任务时。
3. 解决和预防措施
  • 资源分配: 考虑在提交Spark作业时分配更多的资源,或者设置更高的优先级,以减少被抢占的可能性。
  • 重试策略: 确保Spark作业配置了合适的重试机制,使得当执行器丢失时,作业可以恢复执行。
  • 集群管理: 了解集群的资源管理策略,以便更好地调整作业配置,避免未来的执行器丢失。
  • 监控和日志: 监控集群的状态和资源使用情况,查看详细的日志以确定是否存在其他潜在问题导致执行器丢失。
  • 独立集群或队列:申请独立集群或队列,且给出相应的固定配额。
注意
  • 底层资源管理 : ExecutorLostFailure是由于底层资源管理器的行为导致的,因此解决这个问题需要对资源管理器的配置和行为有一定的理解。
  • 作业配置: 合理配置Spark作业的资源请求,可以减少因资源不足导致的执行器丢失问题。

ExecutorLostFailure是分布式计算环境中常见的问题,理解其原因和采取适当的预防措施是确保Spark作业稳定运行的关键。

相关推荐
谷新龙0012 小时前
大数据环境搭建指南:基于 Docker 构建 Hadoop、Hive、HBase 等服务
大数据·hadoop·docker
FF-Studio3 小时前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论
百度Geek说5 小时前
搜索数据建设系列之数据架构重构
数据仓库·重构·架构·spark·dubbo
嘉讯科技HIS系统6 小时前
嘉讯科技:医疗信息化、数字化、智能化三者之间的关系和区别
大数据·数据库·人工智能·科技·智慧医疗
lifallen7 小时前
Paimon vs. HBase:全链路开销对比
java·大数据·数据结构·数据库·算法·flink·hbase
爱吃面的猫7 小时前
大数据Hadoop之——Hbase下载安装部署
大数据·hadoop·hbase
viperrrrrrrrrr77 小时前
大数据(1)-hdfs&hbase
大数据·hdfs·hbase
拓端研究室8 小时前
专题:2025即时零售与各类人群消费行为洞察报告|附400+份报告PDF、原数据表汇总下载
大数据·人工智能
武子康9 小时前
大数据-30 ZooKeeper Java-API 监听节点 创建、删除节点
大数据·后端·zookeeper
小手WA凉9 小时前
Hadoop之MapReduce
大数据·mapreduce