Spark 之ExecutorLostFailure in Apache Spark

错误日志ExecutorLostFailure (executor 34 exited unrelated to the running tasks) Reason: Container container_XXX on host: XXX was preempted.

1. 解释 ExecutorLostFailure
  • Executor丢失 : ExecutorLostFailure是一个在Apache Spark集群运行时可能遇到的错误。它表明一个执行器(Executor)已经丢失,通常是由于底层资源管理器的决策或错误导致。
2. 错误原因分析
  • 容器被抢占: 根据提供的错误信息,执行器丢失的原因是容器Container container_XXX在主机XXX上被抢占(preempted)。抢占通常发生在资源管理器(如YARN)需要释放资源给更高优先级的任务时。
3. 解决和预防措施
  • 资源分配: 考虑在提交Spark作业时分配更多的资源,或者设置更高的优先级,以减少被抢占的可能性。
  • 重试策略: 确保Spark作业配置了合适的重试机制,使得当执行器丢失时,作业可以恢复执行。
  • 集群管理: 了解集群的资源管理策略,以便更好地调整作业配置,避免未来的执行器丢失。
  • 监控和日志: 监控集群的状态和资源使用情况,查看详细的日志以确定是否存在其他潜在问题导致执行器丢失。
  • 独立集群或队列:申请独立集群或队列,且给出相应的固定配额。
注意
  • 底层资源管理 : ExecutorLostFailure是由于底层资源管理器的行为导致的,因此解决这个问题需要对资源管理器的配置和行为有一定的理解。
  • 作业配置: 合理配置Spark作业的资源请求,可以减少因资源不足导致的执行器丢失问题。

ExecutorLostFailure是分布式计算环境中常见的问题,理解其原因和采取适当的预防措施是确保Spark作业稳定运行的关键。

相关推荐
武子康3 小时前
大数据-98 Spark 从 DStream 到 Structured Streaming:Spark 实时计算的演进
大数据·后端·spark
阿里云大数据AI技术3 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
代码匠心6 小时前
从零开始学Flink:数据源
java·大数据·后端·flink
Lx3528 小时前
复杂MapReduce作业设计:多阶段处理的最佳实践
大数据·hadoop
武子康11 小时前
大数据-100 Spark DStream 转换操作全面总结:map、reduceByKey 到 transform 的实战案例
大数据·后端·spark
expect7g12 小时前
Flink KeySelector
大数据·后端·flink
阿里云大数据AI技术1 天前
StarRocks 助力数禾科技构建实时数仓:从数据孤岛到智能决策
大数据
Lx3521 天前
Hadoop数据处理优化:减少Shuffle阶段的性能损耗
大数据·hadoop
武子康1 天前
大数据-99 Spark Streaming 数据源全面总结:原理、应用 文件流、Socket、RDD队列流
大数据·后端·spark
阿里云大数据AI技术2 天前
大数据公有云市场第一,阿里云占比47%!
大数据