Redis 除了做缓存,还能做什么?

  • 分布式锁 :通过 Redis 来做分布式锁是一种比较常见的方式。通常情况下,我们都是基于 Redisson 来实现分布式锁。关于 Redis 实现分布式锁的详细介绍,可以看我写的这篇文章:分布式锁详解open in new window
  • 限流 :一般是通过 Redis + Lua 脚本的方式来实现限流。相关阅读:《我司用了 6 年的 Redis 分布式限流器,可以说是非常厉害了!》open in new window
  • 消息队列:Redis 自带的 List 数据结构可以作为一个简单的队列使用。Redis 5.0 中增加的 Stream 类型的数据结构更加适合用来做消息队列。它比较类似于 Kafka,有主题和消费组的概念,支持消息持久化以及 ACK 机制。
  • 延时队列:Redisson 内置了延时队列(基于 Sorted Set 实现的)。
  • 分布式 Session :利用 String 或者 Hash 数据类型保存 Session 数据,所有的服务器都可以访问。
  • 复杂业务场景:通过 Redis 以及 Redis 扩展(比如 Redisson)提供的数据结构,我们可以很方便地完成很多复杂的业务场景比如通过 Bitmap 统计活跃用户、通过 Sorted Set 维护排行榜。

[Redis 可以做消息队列么?](#Redis 可以做消息队列么?)

实际项目中也没见谁使用 Redis 来做消息队列,对于这部分知识点大家了解就好了。

先说结论:可以是可以,但不建议使用 Redis 来做消息队列。和专业的消息队列相比,还是有很多欠缺的地方。

Redis 2.0 之前,如果想要使用 Redis 来做消息队列的话,只能通过 List 来实现。

通过 RPUSH/LPOP 或者 LPUSH/RPOP即可实现简易版消息队列:

# 生产者生产消息
RPUSH myList msg1 msg2
(integer) 2
RPUSH myList msg3
(integer) 3
# 消费者消费消息
LPOP myList
"msg1"

不过,通过 RPUSH/LPOP 或者 LPUSH/RPOP这样的方式存在性能问题,我们需要不断轮询去调用 RPOPLPOP 来消费消息。当 List 为空时,大部分的轮询的请求都是无效请求,这种方式大量浪费了系统资源。

# 超时时间为 10s
# 如果有数据立刻返回,否则最多等待10秒
BRPOP myList 10
null

List 实现消息队列功能太简单,像消息确认机制等功能还需要我们自己实现,最要命的是没有广播机制,消息也只能被消费一次。

Redis 2.0 引入了发布订阅 (pub/sub) 功能,解决了 List 实现消息队列没有广播机制的问题。

pub/sub 中引入了一个概念叫 channel(频道),发布订阅机制的实现就是基于这个 channel 来做的。

pub/sub 涉及发布者(Publisher)和订阅者(Subscriber,也叫消费者)两个角色:

  • 发布者通过 PUBLISH 投递消息给指定 channel。
  • 订阅者通过SUBSCRIBE订阅它关心的 channel。并且,订阅者可以订阅一个或者多个 channel。

我们这里启动 3 个 Redis 客户端来简单演示一下:

pub/sub 实现消息队列演示

pub/sub 既能单播又能广播,还支持 channel 的简单正则匹配。不过,消息丢失(客户端断开连接或者 Redis 宕机都会导致消息丢失)、消息堆积(发布者发布消息的时候不会管消费者的具体消费能力如何)等问题依然没有一个比较好的解决办法。

为此,Redis 5.0 新增加的一个数据结构 Stream 来做消息队列。Stream 支持:

  • 发布 / 订阅模式
  • 按照消费者组进行消费(借鉴了 Kafka 消费者组的概念)
  • 消息持久化( RDB 和 AOF)
  • ACK 机制(通过确认机制来告知已经成功处理了消息)
  • 阻塞式获取消息

Stream 的结构如下:

这是一个有序的消息链表,每个消息都有一个唯一的 ID 和对应的内容。ID 是一个时间戳和序列号的组合,用来保证消息的唯一性和递增性。内容是一个或多个键值对(类似 Hash 基本数据类型),用来存储消息的数据。

这里再对图中涉及到的一些概念,进行简单解释:

  • Consumer Group:消费者组用于组织和管理多个消费者。消费者组本身不处理消息,而是再将消息分发给消费者,由消费者进行真正的消费
  • last_delivered_id:标识消费者组当前消费位置的游标,消费者组中任意一个消费者读取了消息都会使 last_delivered_id 往前移动。
  • pending_ids:记录已经被客户端消费但没有 ack 的消息的 ID。

下面是Stream 用作消息队列时常用的命令:

  • XADD:向流中添加新的消息。
  • XREAD:从流中读取消息。
  • XREADGROUP:从消费组中读取消息。
  • XRANGE:根据消息 ID 范围读取流中的消息。
  • XREVRANGE:与 XRANGE 类似,但以相反顺序返回结果。
  • XDEL:从流中删除消息。
  • XTRIM:修剪流的长度,可以指定修建策略(MAXLEN/MINID)。
  • XLEN:获取流的长度。
  • XGROUP CREATE:创建消费者组。
  • XGROUP DESTROY : 删除消费者组
  • XGROUP DELCONSUMER:从消费者组中删除一个消费者。
  • XGROUP SETID:为消费者组设置新的最后递送消息 ID
  • XACK:确认消费组中的消息已被处理。
  • XPENDING:查询消费组中挂起(未确认)的消息。
  • XCLAIM:将挂起的消息从一个消费者转移到另一个消费者。
  • XINFO:获取流(XINFO STREAM)、消费组(XINFO GROUPS)或消费者(XINFO CONSUMERS)的详细信息。

总的来说,Stream 已经可以满足一个消息队列的基本要求了。不过,Stream 在实际使用中依然会有一些小问题不太好解决比如在 Redis 发生故障恢复后不能保证消息至少被消费一次。

综上,和专业的消息队列相比,使用 Redis 来实现消息队列还是有很多欠缺的地方比如消息丢失和堆积问题不好解决。因此,我们通常建议不要使用 Redis 来做消息队列,你完全可以选择市面上比较成熟的一些消息队列比如 RocketMQ、Kafka。不过,如果你就是想要用 Redis 来做消息队列的话,那我建议你优先考虑 Stream,这是目前相对最优的 Redis 消息队列实现。

相关推荐
ketil2712 分钟前
Ubuntu 安装 redis
redis
齐 飞31 分钟前
MongoDB笔记01-概念与安装
前端·数据库·笔记·后端·mongodb
云空31 分钟前
《Python 与 SQLite:强大的数据库组合》
数据库·python·sqlite
暮毅36 分钟前
10.Node.js连接MongoDb
数据库·mongodb·node.js
wowocpp39 分钟前
ubuntu 22.04 server 格式化 磁盘 为 ext4 并 自动挂载 LTS
服务器·数据库·ubuntu
成富1 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
songqq271 小时前
SQL题:使用hive查询各类型专利top 10申请人,以及对应的专利申请数
数据库·sql
计算机学长felix1 小时前
基于SpringBoot的“校园交友网站”的设计与实现(源码+数据库+文档+PPT)
数据库·spring boot·毕业设计·交友
王佑辉1 小时前
【redis】redis缓存和数据库保证一致性的方案
redis·面试
小码的头发丝、2 小时前
Django中ListView 和 DetailView类的区别
数据库·python·django