mysql 索引(为什么选择B+ Tree?)

索引实现原理

索引:排好序数据结构

优点:降低I/O成本,CPU的资源消耗(数据持久化在磁盘中,每次查询都得与磁盘交互)

缺点:更新表效率变慢,(更新表数据,还要更新索引),占用空间

分类:主键索引,唯一索引,单值索引,组合索引

索引的数据结构

Hash表(舍弃:不适合范围查找和排序)

hashMap中(key,value)就说基于这种hash算法

对于hash算法的CRUD 来讲,时间复杂度为O(1),但对于范围 查询和排序来讲,时间复杂度又从最好变为O(n)

二叉树(舍弃:自增序列无效)

理想情况

mysql不使用的原因:对于自增数据,树左倾或右倾形成链表,时间复杂度变回了O(n)

红黑树(舍弃:树会很高)

本质就是二叉树,相比较于二叉树,他有平衡功能(当一边高时,会自动更新根节点),又称为二叉平衡树

mysql 不使用原因:数据量大的时候,树会更高,查找到叶子节点效率也会慢,每层就是一次IO

B Tree(舍弃:每个节点存放数据,可以优化)

特点:在每个节点 ,放多个 索引

优点:树就不会高,但每个节点都会存data数据,会占据很大的磁盘空间

B+ Tree(mysql默认)

优点:

1.非叶子节点不储data,只存储索引,可以放更多的索引

2.叶子节点包含所有索引+data字段,由双向链表 排成一行(更好的实现范围查找和排序)

3.叶子节点用指针连接,提高区间访问的性能

mysql 默认每个节点为16KB ,

例如:若使用bigInt的主键,每个节点大概可放1170 个索引,若树高3层,则为1170*1170 *16 约为2000多万索引

总结:(数据存叶子节点,双向链表)

BTree 和B+Tree都是多路搜索树,区别在于叶子节点和非叶子节点的处理。

1.BTree 每个 节点都储存索引+数据,B+Tree 的非叶子节点 只存储索引+指向叶子节点的指针,数据存到叶子节点 ,这样B+Tree 的非叶子节点就可以放更多的索引,树的层级也就降低了,这样查找更快,减少了磁盘IO

2.B+Tree 的叶子节点都有指针相连接,形成双向链接表 ,这样在范围和排序时更快,而BTree 的叶子节点没有相连接,范围查找时还得向父节点查找。所以B+Tree 的范围查找和排序更好

数据结构训练网址

https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

相关推荐
Leo.yuan3 分钟前
数据仓库建设全解析!
大数据·数据库·数据仓库·数据分析·spark
闪电麦坤959 分钟前
SQL:子查询(subqueries)
数据库·sql
活跃的煤矿打工人9 分钟前
【星海出品】分布式存储数据库etcd
数据库·分布式·etcd
文牧之12 分钟前
PostgreSQL的扩展 pgcrypto
运维·数据库·postgresql
老友@2 小时前
小集合 VS 大集合:MySQL 去重计数性能优化
数据库·mysql·性能优化
声声codeGrandMaster2 小时前
django之优化分页功能(利用参数共存及封装来实现)
数据库·后端·python·django
麦麦大数据3 小时前
vue+neo4j+flask 音乐知识图谱推荐系统
vue.js·mysql·flask·知识图谱·neo4j·推荐算法·音乐推荐
熏鱼的小迷弟Liu3 小时前
【Redis】Redis Zset实现原理:跳表+哈希表的精妙设计
数据库·redis·散列表
淋一遍下雨天4 小时前
Spark Streaming核心编程总结(四)
java·开发语言·数据库
zru_96024 小时前
Windows 安装 MongoDB 教程
数据库·mongodb