mysql 索引(为什么选择B+ Tree?)

索引实现原理

索引:排好序数据结构

优点:降低I/O成本,CPU的资源消耗(数据持久化在磁盘中,每次查询都得与磁盘交互)

缺点:更新表效率变慢,(更新表数据,还要更新索引),占用空间

分类:主键索引,唯一索引,单值索引,组合索引

索引的数据结构

Hash表(舍弃:不适合范围查找和排序)

hashMap中(key,value)就说基于这种hash算法

对于hash算法的CRUD 来讲,时间复杂度为O(1),但对于范围 查询和排序来讲,时间复杂度又从最好变为O(n)

二叉树(舍弃:自增序列无效)

理想情况

mysql不使用的原因:对于自增数据,树左倾或右倾形成链表,时间复杂度变回了O(n)

红黑树(舍弃:树会很高)

本质就是二叉树,相比较于二叉树,他有平衡功能(当一边高时,会自动更新根节点),又称为二叉平衡树

mysql 不使用原因:数据量大的时候,树会更高,查找到叶子节点效率也会慢,每层就是一次IO

B Tree(舍弃:每个节点存放数据,可以优化)

特点:在每个节点 ,放多个 索引

优点:树就不会高,但每个节点都会存data数据,会占据很大的磁盘空间

B+ Tree(mysql默认)

优点:

1.非叶子节点不储data,只存储索引,可以放更多的索引

2.叶子节点包含所有索引+data字段,由双向链表 排成一行(更好的实现范围查找和排序)

3.叶子节点用指针连接,提高区间访问的性能

mysql 默认每个节点为16KB ,

例如:若使用bigInt的主键,每个节点大概可放1170 个索引,若树高3层,则为1170*1170 *16 约为2000多万索引

总结:(数据存叶子节点,双向链表)

BTree 和B+Tree都是多路搜索树,区别在于叶子节点和非叶子节点的处理。

1.BTree 每个 节点都储存索引+数据,B+Tree 的非叶子节点 只存储索引+指向叶子节点的指针,数据存到叶子节点 ,这样B+Tree 的非叶子节点就可以放更多的索引,树的层级也就降低了,这样查找更快,减少了磁盘IO

2.B+Tree 的叶子节点都有指针相连接,形成双向链接表 ,这样在范围和排序时更快,而BTree 的叶子节点没有相连接,范围查找时还得向父节点查找。所以B+Tree 的范围查找和排序更好

数据结构训练网址

https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

相关推荐
哈里谢顿8 小时前
MySQL 索引失效的 12 宗罪:一条 SQL 是怎样把索引踢出执行计划的?
mysql
@淡 定8 小时前
Redis热点Key独立集群实现方案
数据库·redis·缓存
laocooon5238578868 小时前
mysql,100个题目。
数据库·sql·mysql
Web极客码8 小时前
如何在Ubuntu服务器上安装和配置BIND9
服务器·数据库·ubuntu
W001hhh8 小时前
数据库实训Day004上午
数据库
funfan05179 小时前
【运维】MySQL数据库全量备份与恢复实战指南:从入门到精通
运维·数据库·mysql
+VX:Fegn08959 小时前
计算机毕业设计|基于springboot + vue在线音乐播放系统(源码+数据库+文档)
数据库·vue.js·spring boot·后端·课程设计
tq10869 小时前
通用数据引用表示法:基于协议-URI-JSONPath的简洁数据定位规范
数据库
+VX:Fegn089510 小时前
计算机毕业设计|基于springboot + vue律师咨询系统(源码+数据库+文档)
java·数据库·vue.js·spring boot·后端·课程设计
manuel_8975710 小时前
六 系统安全
网络·数据库·系统安全