ResNet学习笔记

一、residual结构

优点:
(1)超深的网络结构(突破1000层)
(2)提出residual模块
(3)使用Batch Normalization加速训练(丢弃dropout)
解决问题:
(1) 梯度消失和梯度爆炸
(2) 退化问题,即层数深效果反而不好
右图对比左图, 可以减少计算的参数
二、

option B 可以使实线部分的输入矩阵和输出矩阵shape不同
三、Batch Normalization

四、网络结构图

相关推荐
Tianyanxiao1 分钟前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售
爱吃生蚝的于勒2 分钟前
深入学习指针(5)!!!!!!!!!!!!!!!
c语言·开发语言·数据结构·学习·计算机网络·算法
撞南墙者8 分钟前
OpenCV自学系列(1)——简介和GUI特征操作
人工智能·opencv·计算机视觉
OCR_wintone4219 分钟前
易泊车牌识别相机,助力智慧工地建设
人工智能·数码相机·ocr
王哈哈^_^31 分钟前
【数据集】【YOLO】【VOC】目标检测数据集,查找数据集,yolo目标检测算法详细实战训练步骤!
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·pyqt
一者仁心37 分钟前
【AI技术】PaddleSpeech
人工智能
是瑶瑶子啦1 小时前
【深度学习】论文笔记:空间变换网络(Spatial Transformer Networks)
论文阅读·人工智能·深度学习·视觉检测·空间变换
EasyCVR1 小时前
萤石设备视频接入平台EasyCVR多品牌摄像机视频平台海康ehome平台(ISUP)接入EasyCVR不在线如何排查?
运维·服务器·网络·人工智能·ffmpeg·音视频
柳鲲鹏1 小时前
OpenCV视频防抖源码及编译脚本
人工智能·opencv·计算机视觉
西柚小萌新1 小时前
8.机器学习--决策树
人工智能·决策树·机器学习