ResNet学习笔记

一、residual结构

优点:
(1)超深的网络结构(突破1000层)
(2)提出residual模块
(3)使用Batch Normalization加速训练(丢弃dropout)
解决问题:
(1) 梯度消失和梯度爆炸
(2) 退化问题,即层数深效果反而不好
右图对比左图, 可以减少计算的参数
二、

option B 可以使实线部分的输入矩阵和输出矩阵shape不同
三、Batch Normalization

四、网络结构图

相关推荐
凯禾瑞华养老实训室33 分钟前
人才教育导向下:老年生活照护实训室助力提升学生老年照护服务能力
人工智能
知识分享小能手33 分钟前
React学习教程,从入门到精通, React 属性(Props)语法知识点与案例详解(14)
前端·javascript·vue.js·学习·react.js·vue·react
湫兮之风2 小时前
Opencv: cv::LUT()深入解析图像块快速查表变换
人工智能·opencv·计算机视觉
Christo32 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘
qq_508823402 小时前
金融量化指标--2Alpha 阿尔法
大数据·人工智能
黑金IT3 小时前
`.cursorrules` 与 `.cursorcontext`:Cursor AI 编程助手时代下的“双轨配置”指南
人工智能
汇能感知3 小时前
摄像头模块在运动相机中的特殊应用
经验分享·笔记·科技
阿巴Jun3 小时前
【数学】线性代数知识点总结
笔记·线性代数·矩阵
茯苓gao3 小时前
STM32G4 速度环开环,电流环闭环 IF模式建模
笔记·stm32·单片机·嵌入式硬件·学习
dlraba8023 小时前
基于 OpenCV 的信用卡数字识别:从原理到实现
人工智能·opencv·计算机视觉