ResNet学习笔记

一、residual结构

优点:
(1)超深的网络结构(突破1000层)
(2)提出residual模块
(3)使用Batch Normalization加速训练(丢弃dropout)
解决问题:
(1) 梯度消失和梯度爆炸
(2) 退化问题,即层数深效果反而不好
右图对比左图, 可以减少计算的参数
二、

option B 可以使实线部分的输入矩阵和输出矩阵shape不同
三、Batch Normalization

四、网络结构图

相关推荐
37手游后端团队几秒前
Claude Code Review:让AI审核更懂你的代码
人工智能·后端·ai编程
源代码杀手33 分钟前
深入解析 Spec Kit 工作流:基于 GitHub 的 Spec-Driven Development 实践
人工智能·github
聪明的笨猪猪34 分钟前
Java Spring “IOC + DI”面试清单(含超通俗生活案例与深度理解)
java·经验分享·笔记·面试
im_AMBER1 小时前
Web 开发 24
前端·笔记·git·学习
szxinmai主板定制专家1 小时前
基于 ZYNQ ARM+FPGA+AI YOLOV4 的电网悬垂绝缘子缺陷检测系统的研究
arm开发·人工智能·嵌入式硬件·yolo·fpga开发
聚客AI2 小时前
🌈提示工程已过时?上下文工程从理论到实践的完整路线图
人工智能·llm·agent
C嘎嘎嵌入式开发2 小时前
(二) 机器学习之卷积神经网络
人工智能·机器学习·cnn
文心快码BaiduComate2 小时前
开工不累,双强护航:文心快码接入 DeepSeek-V3.2-Exp和 GLM-4.6,助你节后高效Coding
前端·人工智能·后端
AI小云2 小时前
【Python与AI基础】Python编程基础:函数与参数
人工智能·python