论文阅读——VSA

VSA: Learning Varied-Size Window Attention in Vision Transformers

方法:

给定输入特征X,VSA首先按照基线方法的例程,将这些标记划分为几个窗口Xw,窗口大小为预定义的w。我们将这些窗口称为默认窗口,并从默认窗口中获取查询:

为了估计每个默认窗口的目标窗口大小和位置,VSA将默认窗口的大小和位置作为参考,并采用可变大小窗口回归(VSR)模块来预测参考的规模和偏移,如图3(b)所示。VSR模块由平均池化层、LeakyReLU激活层和步长为1的1×1卷积层组成。池化层的内核大小和步长遵循默认窗口大小。

其中Sw和Ow∈R2×N表示相对于默认窗口位置的水平和垂直方向上的估计尺度和偏移,独立于N个注意力头。生成的窗口称为目标窗口。

我们首先从特征图X中得到

然后VSA模块分别从K,V上的每个不同大小的窗口中均匀地采样M个特征,并获得作为查询tokens Qw的key/value tokens。为了将计算成本保持为窗口注意力,我们将M设置为w×w。然后将采样的与用于注意力计算的查询Qw一起馈送到MHSA中。然而,由于key/value tokens是从不同位置采样的,查询tokens,因此query 和 key tokens之间的相对位置嵌入可能无法很好地描述空间关系。遵循CPVT,我们在MHSA层之前采用条件位置嵌入(CPE)将空间关系提供到模型中,如图3(c)所示,即

其中,Z l−1是来自前一个变换器块的特征,CP E由深度卷积层实现,其内核大小等于窗口大小,即默认情况下为7×7,步长为1。

实验结果:

相关推荐
arbboter3 分钟前
【AI插件开发】Notepad++ AI插件开发1.0发布和使用说明
人工智能·大模型·notepad++·ai助手·ai插件·aicoder·notepad++插件开发
IT_Octopus15 分钟前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python
果冻人工智能20 分钟前
AI军备竞赛:我们是不是正在造一个无法控制的神?
人工智能
暴龙胡乱写博客26 分钟前
OpenCV---图像预处理(四)
人工智能·opencv·计算机视觉
程序员辣条33 分钟前
深度测评 RAG 应用评估框架:指标最全面的 RAGas
人工智能·程序员
curdcv_po34 分钟前
字节跳动Trae:一款革命性的免费AI编程工具完全评测
人工智能·trae
程序员辣条35 分钟前
为什么需要提示词工程?什么是提示词工程(prompt engineering)?为什么需要提示词工程?收藏我这一篇就够了!
人工智能·程序员·产品经理
孔令飞39 分钟前
Go:终于有了处理未定义字段的实用方案
人工智能·云原生·go
清流君1 小时前
【MySQL】数据库 Navicat 可视化工具与 MySQL 命令行基本操作
数据库·人工智能·笔记·mysql·ue5·数字孪生
Blossom.1181 小时前
人工智能在智能家居中的应用与发展
人工智能·深度学习·机器学习·智能家居·vr·虚拟现实·多模态融合