论文阅读——VSA

VSA: Learning Varied-Size Window Attention in Vision Transformers

方法:

给定输入特征X,VSA首先按照基线方法的例程,将这些标记划分为几个窗口Xw,窗口大小为预定义的w。我们将这些窗口称为默认窗口,并从默认窗口中获取查询:

为了估计每个默认窗口的目标窗口大小和位置,VSA将默认窗口的大小和位置作为参考,并采用可变大小窗口回归(VSR)模块来预测参考的规模和偏移,如图3(b)所示。VSR模块由平均池化层、LeakyReLU激活层和步长为1的1×1卷积层组成。池化层的内核大小和步长遵循默认窗口大小。

其中Sw和Ow∈R2×N表示相对于默认窗口位置的水平和垂直方向上的估计尺度和偏移,独立于N个注意力头。生成的窗口称为目标窗口。

我们首先从特征图X中得到

然后VSA模块分别从K,V上的每个不同大小的窗口中均匀地采样M个特征,并获得作为查询tokens Qw的key/value tokens。为了将计算成本保持为窗口注意力,我们将M设置为w×w。然后将采样的与用于注意力计算的查询Qw一起馈送到MHSA中。然而,由于key/value tokens是从不同位置采样的,查询tokens,因此query 和 key tokens之间的相对位置嵌入可能无法很好地描述空间关系。遵循CPVT,我们在MHSA层之前采用条件位置嵌入(CPE)将空间关系提供到模型中,如图3(c)所示,即

其中,Z l−1是来自前一个变换器块的特征,CP E由深度卷积层实现,其内核大小等于窗口大小,即默认情况下为7×7,步长为1。

实验结果:

相关推荐
Hhang3 分钟前
Pageindex -- 新一代的文档智能检索
前端·人工智能
前端付豪3 分钟前
LangChain 模型I/O:输入提示、调用模型、解析输出
人工智能·程序员·langchain
瑞华丽PLM11 分钟前
守住数字化的胜算:PLM项目实施风险控制全景方案
大数据·人工智能·plm·国产plm·瑞华丽plm·瑞华丽
恋猫de小郭14 分钟前
Claude Code 已经 100% 自己写代码,为什么 Anthropic 还有上百个工程职位空缺?
前端·人工智能·ai编程
董厂长23 分钟前
用 LangGraph 实现 Small-to-Big 分块检索策略
人工智能·算法·rag
大江东去浪淘尽千古风流人物25 分钟前
【Sensor】IMU传感器选型车轨级 VS 消费级
人工智能·python·算法·机器学习·机器人
jay神43 分钟前
基于 YOLOv11 的人脸表情识别系统
人工智能·深度学习·yolo·目标检测·计算机视觉
2501_9479082043 分钟前
试了一下 MaiHH Conn
人工智能
byzh_rc1 小时前
[深度学习网络从入门到入土] 含并行连结的网络GoogLeNet
网络·人工智能·深度学习
ICscholar1 小时前
具身智能‘Affordance‘理解
人工智能·学习·算法