论文阅读——VSA

VSA: Learning Varied-Size Window Attention in Vision Transformers

方法:

给定输入特征X,VSA首先按照基线方法的例程,将这些标记划分为几个窗口Xw,窗口大小为预定义的w。我们将这些窗口称为默认窗口,并从默认窗口中获取查询:

为了估计每个默认窗口的目标窗口大小和位置,VSA将默认窗口的大小和位置作为参考,并采用可变大小窗口回归(VSR)模块来预测参考的规模和偏移,如图3(b)所示。VSR模块由平均池化层、LeakyReLU激活层和步长为1的1×1卷积层组成。池化层的内核大小和步长遵循默认窗口大小。

其中Sw和Ow∈R2×N表示相对于默认窗口位置的水平和垂直方向上的估计尺度和偏移,独立于N个注意力头。生成的窗口称为目标窗口。

我们首先从特征图X中得到

然后VSA模块分别从K,V上的每个不同大小的窗口中均匀地采样M个特征,并获得作为查询tokens Qw的key/value tokens。为了将计算成本保持为窗口注意力,我们将M设置为w×w。然后将采样的与用于注意力计算的查询Qw一起馈送到MHSA中。然而,由于key/value tokens是从不同位置采样的,查询tokens,因此query 和 key tokens之间的相对位置嵌入可能无法很好地描述空间关系。遵循CPVT,我们在MHSA层之前采用条件位置嵌入(CPE)将空间关系提供到模型中,如图3(c)所示,即

其中,Z l−1是来自前一个变换器块的特征,CP E由深度卷积层实现,其内核大小等于窗口大小,即默认情况下为7×7,步长为1。

实验结果:

相关推荐
湫兮之风38 分钟前
Opencv: cv::LUT()深入解析图像块快速查表变换
人工智能·opencv·计算机视觉
Christo31 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘
qq_508823401 小时前
金融量化指标--2Alpha 阿尔法
大数据·人工智能
黑金IT2 小时前
`.cursorrules` 与 `.cursorcontext`:Cursor AI 编程助手时代下的“双轨配置”指南
人工智能
dlraba8022 小时前
基于 OpenCV 的信用卡数字识别:从原理到实现
人工智能·opencv·计算机视觉
IMER SIMPLE3 小时前
人工智能-python-深度学习-经典神经网络AlexNet
人工智能·python·深度学习
小憩-4 小时前
【机器学习】吴恩达机器学习笔记
人工智能·笔记·机器学习
却道天凉_好个秋5 小时前
深度学习(二):神经元与神经网络
人工智能·神经网络·计算机视觉·神经元
UQI-LIUWJ5 小时前
unsloth笔记:运行&微调 gemma
人工智能·笔记·深度学习
THMAIL5 小时前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn