论文阅读——VSA

VSA: Learning Varied-Size Window Attention in Vision Transformers

方法:

给定输入特征X,VSA首先按照基线方法的例程,将这些标记划分为几个窗口Xw,窗口大小为预定义的w。我们将这些窗口称为默认窗口,并从默认窗口中获取查询:

为了估计每个默认窗口的目标窗口大小和位置,VSA将默认窗口的大小和位置作为参考,并采用可变大小窗口回归(VSR)模块来预测参考的规模和偏移,如图3(b)所示。VSR模块由平均池化层、LeakyReLU激活层和步长为1的1×1卷积层组成。池化层的内核大小和步长遵循默认窗口大小。

其中Sw和Ow∈R2×N表示相对于默认窗口位置的水平和垂直方向上的估计尺度和偏移,独立于N个注意力头。生成的窗口称为目标窗口。

我们首先从特征图X中得到

然后VSA模块分别从K,V上的每个不同大小的窗口中均匀地采样M个特征,并获得作为查询tokens Qw的key/value tokens。为了将计算成本保持为窗口注意力,我们将M设置为w×w。然后将采样的与用于注意力计算的查询Qw一起馈送到MHSA中。然而,由于key/value tokens是从不同位置采样的,查询tokens,因此query 和 key tokens之间的相对位置嵌入可能无法很好地描述空间关系。遵循CPVT,我们在MHSA层之前采用条件位置嵌入(CPE)将空间关系提供到模型中,如图3(c)所示,即

其中,Z l−1是来自前一个变换器块的特征,CP E由深度卷积层实现,其内核大小等于窗口大小,即默认情况下为7×7,步长为1。

实验结果:

相关推荐
upper20201 天前
图数据挖掘
人工智能·数据挖掘
Wang201220131 天前
AI 相关的算法;架构等专有名称总结和介绍
人工智能·算法·架构
liulanba1 天前
机器学习评估指标详解 - 进阶篇
人工智能·机器学习
yi个名字1 天前
AI 应用的 SRE 视角:延迟、可靠性、成本与安全如何在一套系统里闭环
人工智能·安全
乾元1 天前
红队 / 蓝队:用 AI 自动生成攻击场景并评估防御效果——从“安全演练”到“可计算的网络对抗系统”
运维·网络·人工智能·网络协议·安全·web安全·架构
Tezign_space1 天前
AI 时代内容增长:靠谱内容运营解决方案的选择逻辑
大数据·人工智能·内容运营
小王努力学编程1 天前
用AIPing统一API快速接入限时免费开放的GLM - 4.7与MiniMax - M2.1 ,打造专属快速解读文档项目!
人工智能
视觉人机器视觉1 天前
ROS2安装步骤总结
人工智能
小怪兽会微笑1 天前
MoM (Mixture-of-Memories)新型线性序列建模架构
人工智能·深度学习·架构
非著名架构师1 天前
空间计算的“环境校准器”:高精度AI气象如何为AR导航与自动驾驶提供厘米级实时大气修正?
人工智能·ar·空间计算