论文阅读——VSA

VSA: Learning Varied-Size Window Attention in Vision Transformers

方法:

给定输入特征X,VSA首先按照基线方法的例程,将这些标记划分为几个窗口Xw,窗口大小为预定义的w。我们将这些窗口称为默认窗口,并从默认窗口中获取查询:

为了估计每个默认窗口的目标窗口大小和位置,VSA将默认窗口的大小和位置作为参考,并采用可变大小窗口回归(VSR)模块来预测参考的规模和偏移,如图3(b)所示。VSR模块由平均池化层、LeakyReLU激活层和步长为1的1×1卷积层组成。池化层的内核大小和步长遵循默认窗口大小。

其中Sw和Ow∈R2×N表示相对于默认窗口位置的水平和垂直方向上的估计尺度和偏移,独立于N个注意力头。生成的窗口称为目标窗口。

我们首先从特征图X中得到

然后VSA模块分别从K,V上的每个不同大小的窗口中均匀地采样M个特征,并获得作为查询tokens Qw的key/value tokens。为了将计算成本保持为窗口注意力,我们将M设置为w×w。然后将采样的与用于注意力计算的查询Qw一起馈送到MHSA中。然而,由于key/value tokens是从不同位置采样的,查询tokens,因此query 和 key tokens之间的相对位置嵌入可能无法很好地描述空间关系。遵循CPVT,我们在MHSA层之前采用条件位置嵌入(CPE)将空间关系提供到模型中,如图3(c)所示,即

其中,Z l−1是来自前一个变换器块的特征,CP E由深度卷积层实现,其内核大小等于窗口大小,即默认情况下为7×7,步长为1。

实验结果:

相关推荐
AI科技星5 分钟前
光的几何起源:从螺旋时空到量子现象的完全统一
开发语言·人工智能·线性代数·算法·机器学习
小程故事多_809 分钟前
打破传统桎梏,LLM 让智能运维实现从 “自动化” 到 “自进化”
运维·人工智能·自动化·aigc
星爷AG I15 分钟前
9-9 数量与密度(AGI基础理论)
人工智能·agi
Tiaoxiaobai18 分钟前
如何实现亚细胞定位
人工智能·笔记
cc_beolus19 分钟前
昇腾AI入门
人工智能
AI即插即用20 分钟前
即插即用系列 | CVPR 2025 SegMAN: Mamba与局部注意力强强联合,多尺度上下文注意力的新SOTA
图像处理·人工智能·深度学习·目标检测·计算机视觉·视觉检测
q_354888515323 分钟前
机器学习:Python地铁人流量数据分析与预测系统 基于python地铁数据分析系统+可视化 时间序列预测算法 ✅
大数据·人工智能·python·算法·机器学习·信息可视化·数据分析
房产中介行业研习社23 分钟前
2026年1月房产中介管理系统评测
大数据·人工智能
莱昂纳多迪卡普利奥27 分钟前
LLM学习指南(五)——大语言模型(LLM)
人工智能·语言模型·自然语言处理
方见华Richard28 分钟前
认知几何学:思维如何弯曲意义空间V0.3
人工智能·经验分享·交互·原型模式·空间计算