flink: table api之自定义聚合函数

复制代码
package cn.edu.tju.demo3;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.*;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.descriptors.*;
import org.apache.flink.table.functions.AggregateFunction;
import org.apache.flink.table.functions.ScalarFunction;
import org.apache.flink.table.functions.TableFunction;
import org.apache.flink.types.Row;

public class Test50 {
    private static String HOST_NAME = "xx.xx.xx.xx";
    private static int PORT = 9999;
    private static String DELIMITER ="\n";


    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);



        DataStream<String> socketDataInfo =  env.socketTextStream(HOST_NAME, PORT, DELIMITER);
        SingleOutputStreamOperator<DataInfo> dataInfoStream = socketDataInfo.map(new MapFunction<String, DataInfo>() {
            @Override
            public DataInfo map(String value) throws Exception {

                String[] stringList = value.split(",");
                DataInfo dataInfo = new DataInfo(Long.parseLong(
                        stringList[0]), stringList[1], Double.parseDouble(stringList[2]));
                return dataInfo;
            }
        });

        Table dataTable = tableEnv.fromDataStream(dataInfoStream,"ts,info,val");
        tableEnv.registerFunction("myAggregateFunction", new MyAggregateFunction());
        Table resultTable = dataTable.select("ts,info,val")
                        .groupBy("info")
                                .aggregate("myAggregateFunction(val) as avgVal" )
                                        .select("info, avgVal");

        tableEnv.createTemporaryView("dataInfo", dataTable);

        Table resultTableSql = tableEnv.sqlQuery(
                "select info,myAggregateFunction(val) from dataInfo group by info"

        );


        tableEnv.toRetractStream(resultTable, Row.class).print();
        tableEnv.toRetractStream(resultTableSql, Row.class).print("sql");

        env.execute("my job");

    }

    public static class DataInfo{
        private long ts;
        private String info;
        private double val;

        public long getTs() {
            return ts;
        }

        public void setTs(long ts) {
            this.ts = ts;
        }

        public String getInfo() {
            return info;
        }

        public void setInfo(String info) {
            this.info = info;
        }

        public double getVal() {
            return val;
        }

        public void setVal(double val) {
            this.val = val;
        }

        @Override
        public String toString() {
            return "DataInfo{" +
                    "ts=" + ts +
                    ", info='" + info + '\'' +
                    ", val='" + val + '\'' +
                    '}';
        }

        public DataInfo(long ts, String info, double val) {
            this.ts = ts;
            this.info = info;
            this.val = val;
        }

        public DataInfo() {

        }
    }

    //自定义聚合函数,实现getResult和方法
    public static class MyAggregateFunction extends AggregateFunction<Double, Tuple2<Double, Integer>> {

        @Override
        public Double getValue(Tuple2<Double, Integer> accumulator) {
            return accumulator.f0/accumulator.f1;
        }

        @Override
        public Tuple2<Double, Integer> createAccumulator() {
            return new Tuple2(0.0, 0);
        }

        public void accumulate(Tuple2<Double, Integer> accumulator, double d){
            accumulator.f1 += 1;
            accumulator.f0 += d;
        }


    }
}

nc -lk 9999

输入:

复制代码
1689999831,ffff,34.2
1689999832,ffff,35.3

结果

相关推荐
m0_46652529几秒前
绿盟科技风云卫AI安全能力平台成果重磅发布
大数据·数据库·人工智能·安全
java干货5 分钟前
为什么 “File 10“ 排在 “File 2“ 前面?解决文件名排序的终极算法:自然排序
开发语言·python·算法
机器懒得学习6 分钟前
智能股票分析系统
python·深度学习·金融
毕设源码-郭学长7 分钟前
【开题答辩全过程】以 基于python的二手房数据分析与可视化为例,包含答辩的问题和答案
开发语言·python·数据分析
晟诺数字人7 分钟前
2026年海外直播变革:数字人如何改变游戏规则
大数据·人工智能·产品运营
SR_shuiyunjian10 分钟前
Python第三次作业
python
vx_biyesheji000111 分钟前
豆瓣电影推荐系统 | Python Django 协同过滤 Echarts可视化 深度学习 大数据 毕业设计源码
大数据·爬虫·python·深度学习·django·毕业设计·echarts
2501_9436953320 分钟前
高职大数据与会计专业,考CDA证后能转纯数据分析岗吗?
大数据·数据挖掘·数据分析
鸽芷咕36 分钟前
DrissionPage 成 CANN 仓库爆款自动化工具:背后原因何在?
运维·python·自动化·cann
实时数据37 分钟前
通过大数据的深度分析与精准营销策略,企业能够有效实现精准引流
大数据