【Preprocessing数据预处理】之Scaler

在机器学习中,特征缩放是训练模型前数据预处理阶段的一个关键步骤。不同的缩放器被用来规范化或标准化特征。这里简要概述了您提到的几种缩放器:

StandardScaler

`StandardScaler` 通过去除均值并缩放至单位方差来标准化特征。这种缩放器假设特征分布是正态的,并将它们缩放为均值为零和标准差为一。用于缩放特征 `X` 的公式是:

其中 `μ` 是特征值的平均值,`σ` 是标准差。

MinMaxScaler

`MinMaxScaler` 将特征缩放到给定范围,通常在零和一之间,或者使最小和最大值与某个特定范围对齐。转换公式为:

其中 `X_min` 和 `X_max` 分别是特征的最小值和最大值。这种缩放将所有内点压缩到 [0, 1] 范围内。

RobustScaler

`RobustScaler` 使用类似于 `StandardScaler` 的方法,但它使用中位数和四分位数范围而不是均值和方差。这使得 `RobustScaler` 对异常值的敏感度较低。公式是:

其中 `M` 是中位数,`IQR` 是特征值的四分位数范围。

何时使用每种缩放器:

  • **StandardScaler**:当您的特征大致呈正态分布,并且您希望假设您的特征具有高斯分布时。

  • **MinMaxScaler**:当您知道特征的边界并希望将特征转换为在这些边界之间缩放时。

  • **RobustScaler**:当您的特征中有异常值并希望减少其影响时。

需要注意的是,特征缩放可能会影响您的机器学习模型的性能,特别是对于那些计算数据点之间距离的算法,比如 SVM 或 k-NN,或者那些对特征缩放敏感的基于梯度下降的算法。对于基于树的算法,特征缩放则不那么重要,因为它们是尺度不变的。

相关推荐
艾醒(AiXing-w)1 分钟前
大模型原理剖析——拆解预训练、微调、奖励建模与强化学习四阶段(以ChatGPT构建流程为例)
人工智能·chatgpt
币圈菜头2 分钟前
GAEA Carbon-Silicon Symbiotism NFT 解析:它在系统中扮演的角色,以及与空投权重的关系
人工智能·web3·去中心化·区块链
Deepoch4 分钟前
从“飞行相机”到“空中智能体”:无人机如何重构行业生产力
人工智能·科技·机器人·无人机·开发板·具身模型·deepoc
OAK中国_官方5 分钟前
OAK HUB:您通往视觉AI的门户!
人工智能·计算机视觉·depthai
鲨莎分不晴8 分钟前
独立学习 (IQL):大道至简还是掩耳盗铃
人工智能·深度学习·学习
audyxiao0019 分钟前
如何用Gemini“上车”自动驾驶?通过视觉问答完成自动驾驶任务
人工智能·机器学习·自动驾驶·大语言模型·多模态·gemini
free-elcmacom9 分钟前
深度学习<2>从“看单帧”到“懂故事”:视频模型的帧链推理,藏着机器读懂时间的秘密
人工智能·python·深度学习·音视频
wxdlfkj11 分钟前
从算法溯源到硬件极限:解决微小球面小角度拟合与中心定位的技术路径
人工智能·算法·机器学习
高洁0111 分钟前
基于Tensorflow库的RNN模型预测实战
人工智能·python·算法·机器学习·django
鲨莎分不晴15 分钟前
从 10 到 1000:大规模多智能体的可扩展性 (Mean Field & GNN)
人工智能·学习