【Preprocessing数据预处理】之Scaler

在机器学习中,特征缩放是训练模型前数据预处理阶段的一个关键步骤。不同的缩放器被用来规范化或标准化特征。这里简要概述了您提到的几种缩放器:

StandardScaler

`StandardScaler` 通过去除均值并缩放至单位方差来标准化特征。这种缩放器假设特征分布是正态的,并将它们缩放为均值为零和标准差为一。用于缩放特征 `X` 的公式是:

其中 `μ` 是特征值的平均值,`σ` 是标准差。

MinMaxScaler

`MinMaxScaler` 将特征缩放到给定范围,通常在零和一之间,或者使最小和最大值与某个特定范围对齐。转换公式为:

其中 `X_min` 和 `X_max` 分别是特征的最小值和最大值。这种缩放将所有内点压缩到 [0, 1] 范围内。

RobustScaler

`RobustScaler` 使用类似于 `StandardScaler` 的方法,但它使用中位数和四分位数范围而不是均值和方差。这使得 `RobustScaler` 对异常值的敏感度较低。公式是:

其中 `M` 是中位数,`IQR` 是特征值的四分位数范围。

何时使用每种缩放器:

  • **StandardScaler**:当您的特征大致呈正态分布,并且您希望假设您的特征具有高斯分布时。

  • **MinMaxScaler**:当您知道特征的边界并希望将特征转换为在这些边界之间缩放时。

  • **RobustScaler**:当您的特征中有异常值并希望减少其影响时。

需要注意的是,特征缩放可能会影响您的机器学习模型的性能,特别是对于那些计算数据点之间距离的算法,比如 SVM 或 k-NN,或者那些对特征缩放敏感的基于梯度下降的算法。对于基于树的算法,特征缩放则不那么重要,因为它们是尺度不变的。

相关推荐
乾元1 分钟前
基于时序数据的异常预测——短期容量与拥塞的提前感知
运维·开发语言·网络·人工智能·python·自动化·运维开发
Elastic 中国社区官方博客10 分钟前
Elasticsearch:构建一个 AI 驱动的电子邮件钓鱼检测
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
IT_陈寒11 分钟前
Vite 5大优化技巧:让你的构建速度飙升50%,开发者都在偷偷用!
前端·人工智能·后端
l木本I14 分钟前
星尘自研Lumo-1模型(mind to hand)详细解读
深度学习·机器学习·计算机视觉·transformer·美食
l1t15 分钟前
利用DeepSeek计算abcde五人排成一队,要使c在ab 之间,有几种排法
人工智能·组合数学·deepseek
阿拉斯攀登15 分钟前
电子签名:笔迹特征比对核心算法详解
人工智能·算法·机器学习·电子签名·汉王
说私域17 分钟前
基于开源链动2+1模式、AI智能名片与S2B2C商城小程序的运营创新研究
人工智能·小程序
一招定胜负19 分钟前
机器学习算法三:决策树
算法·决策树·机器学习
weixin_4462608520 分钟前
Agentic Frontend: 灵活的AI助手与聊天机器人构建平台
人工智能·机器人
墨_浅-20 分钟前
教育/培训行业智能体应用分类及知识库检索模型微调
人工智能·分类·数据挖掘