【Preprocessing数据预处理】之Scaler

在机器学习中,特征缩放是训练模型前数据预处理阶段的一个关键步骤。不同的缩放器被用来规范化或标准化特征。这里简要概述了您提到的几种缩放器:

StandardScaler

`StandardScaler` 通过去除均值并缩放至单位方差来标准化特征。这种缩放器假设特征分布是正态的,并将它们缩放为均值为零和标准差为一。用于缩放特征 `X` 的公式是:

其中 `μ` 是特征值的平均值,`σ` 是标准差。

MinMaxScaler

`MinMaxScaler` 将特征缩放到给定范围,通常在零和一之间,或者使最小和最大值与某个特定范围对齐。转换公式为:

其中 `X_min` 和 `X_max` 分别是特征的最小值和最大值。这种缩放将所有内点压缩到 [0, 1] 范围内。

RobustScaler

`RobustScaler` 使用类似于 `StandardScaler` 的方法,但它使用中位数和四分位数范围而不是均值和方差。这使得 `RobustScaler` 对异常值的敏感度较低。公式是:

其中 `M` 是中位数,`IQR` 是特征值的四分位数范围。

何时使用每种缩放器:

  • **StandardScaler**:当您的特征大致呈正态分布,并且您希望假设您的特征具有高斯分布时。

  • **MinMaxScaler**:当您知道特征的边界并希望将特征转换为在这些边界之间缩放时。

  • **RobustScaler**:当您的特征中有异常值并希望减少其影响时。

需要注意的是,特征缩放可能会影响您的机器学习模型的性能,特别是对于那些计算数据点之间距离的算法,比如 SVM 或 k-NN,或者那些对特征缩放敏感的基于梯度下降的算法。对于基于树的算法,特征缩放则不那么重要,因为它们是尺度不变的。

相关推荐
康康的AI博客几秒前
AI驱动的法律智能化:通过多模型平台提升合同审查与法规解读的精准度
大数据·人工智能
码云数智-大飞1 分钟前
Clawdbot 的“永久记忆”机制探秘:如何让 AI 记住每一次对话
人工智能
AI资源库3 分钟前
stepfun-ai/Step-3.5-Flash模型深入解析
人工智能·语言模型·架构
一品威客爱开发4 分钟前
跑腿 APP 开发:双端协同与场景化服务构建
人工智能
智算菩萨20 分钟前
指令遵循的能力涌现:对齐假设与任务泛化
人工智能·aigc
肾透侧视攻城狮21 分钟前
《掌握Keras模型构建基石:全连接、卷积、LSTM等核心层解析与组合策略》
人工智能·深度学习·神经网络·keras核心层类型·conv2d二维卷积层·lstm长短期记忆网络层·dropout随机失活层
m***787421 分钟前
开源模型应用落地-工具使用篇-Spring AI-高阶用法(九)
人工智能·spring·开源
陈天伟教授29 分钟前
人工智能应用- 人机对战:06. 小结
人工智能·深度学习·神经网络·机器学习·dnn
聊聊科技30 分钟前
原创音乐人使用2026年度榜单5款AI编曲软件,创作速度大幅提升
人工智能
TDengine (老段)32 分钟前
TDengine IDMP 数据可视化 7. 事件列表
大数据·数据库·人工智能·物联网·时序数据库·tdengine·涛思数据