【Preprocessing数据预处理】之Scaler

在机器学习中,特征缩放是训练模型前数据预处理阶段的一个关键步骤。不同的缩放器被用来规范化或标准化特征。这里简要概述了您提到的几种缩放器:

StandardScaler

`StandardScaler` 通过去除均值并缩放至单位方差来标准化特征。这种缩放器假设特征分布是正态的,并将它们缩放为均值为零和标准差为一。用于缩放特征 `X` 的公式是:

其中 `μ` 是特征值的平均值,`σ` 是标准差。

MinMaxScaler

`MinMaxScaler` 将特征缩放到给定范围,通常在零和一之间,或者使最小和最大值与某个特定范围对齐。转换公式为:

其中 `X_min` 和 `X_max` 分别是特征的最小值和最大值。这种缩放将所有内点压缩到 [0, 1] 范围内。

RobustScaler

`RobustScaler` 使用类似于 `StandardScaler` 的方法,但它使用中位数和四分位数范围而不是均值和方差。这使得 `RobustScaler` 对异常值的敏感度较低。公式是:

其中 `M` 是中位数,`IQR` 是特征值的四分位数范围。

何时使用每种缩放器:

  • **StandardScaler**:当您的特征大致呈正态分布,并且您希望假设您的特征具有高斯分布时。

  • **MinMaxScaler**:当您知道特征的边界并希望将特征转换为在这些边界之间缩放时。

  • **RobustScaler**:当您的特征中有异常值并希望减少其影响时。

需要注意的是,特征缩放可能会影响您的机器学习模型的性能,特别是对于那些计算数据点之间距离的算法,比如 SVM 或 k-NN,或者那些对特征缩放敏感的基于梯度下降的算法。对于基于树的算法,特征缩放则不那么重要,因为它们是尺度不变的。

相关推荐
跨境卫士苏苏7 分钟前
亚马逊AI广告革命:告别“猜心”,迎接“共创”时代
大数据·人工智能·算法·亚马逊·防关联
珠海西格电力7 分钟前
零碳园区工业厂房光伏一体化(BIPV)基础规划
大数据·运维·人工智能·智慧城市·能源
土星云SaturnCloud37 分钟前
不止是替代:从机械风扇的可靠性困局,看服务器散热技术新范式
服务器·网络·人工智能·ai
小马爱打代码44 分钟前
Spring AI:搭建自定义 MCP Server:获取 QQ 信息
java·人工智能·spring
你们补药再卷啦1 小时前
ai(三)环境资源管理
人工智能·语言模型·电脑
飞哥数智坊1 小时前
GLM-4.6V 初探:国产 AI 能边写边自己配图了
人工智能·chatglm (智谱)
杰克逊的日记2 小时前
大模型的原理是什么
人工智能·大模型·gpu·算力
智算菩萨2 小时前
AI在智能制造中的落地:从预测维护到自适应生产调度
人工智能·制造
云和数据.ChenGuang2 小时前
AI 算力竞争下的昇腾硬件定位
人工智能
中科天工2 小时前
从“人海战术”到“无人值守”:一套智能工厂解决方案,如何用最小空间释放最大产能?
大数据·人工智能·智能