【Preprocessing数据预处理】之Scaler

在机器学习中,特征缩放是训练模型前数据预处理阶段的一个关键步骤。不同的缩放器被用来规范化或标准化特征。这里简要概述了您提到的几种缩放器:

StandardScaler

`StandardScaler` 通过去除均值并缩放至单位方差来标准化特征。这种缩放器假设特征分布是正态的,并将它们缩放为均值为零和标准差为一。用于缩放特征 `X` 的公式是:

其中 `μ` 是特征值的平均值,`σ` 是标准差。

MinMaxScaler

`MinMaxScaler` 将特征缩放到给定范围,通常在零和一之间,或者使最小和最大值与某个特定范围对齐。转换公式为:

其中 `X_min` 和 `X_max` 分别是特征的最小值和最大值。这种缩放将所有内点压缩到 [0, 1] 范围内。

RobustScaler

`RobustScaler` 使用类似于 `StandardScaler` 的方法,但它使用中位数和四分位数范围而不是均值和方差。这使得 `RobustScaler` 对异常值的敏感度较低。公式是:

其中 `M` 是中位数,`IQR` 是特征值的四分位数范围。

何时使用每种缩放器:

  • **StandardScaler**:当您的特征大致呈正态分布,并且您希望假设您的特征具有高斯分布时。

  • **MinMaxScaler**:当您知道特征的边界并希望将特征转换为在这些边界之间缩放时。

  • **RobustScaler**:当您的特征中有异常值并希望减少其影响时。

需要注意的是,特征缩放可能会影响您的机器学习模型的性能,特别是对于那些计算数据点之间距离的算法,比如 SVM 或 k-NN,或者那些对特征缩放敏感的基于梯度下降的算法。对于基于树的算法,特征缩放则不那么重要,因为它们是尺度不变的。

相关推荐
像风没有归宿a6 分钟前
2025年人工智能十大技术突破:从AGI到多模态大模型
人工智能
噜~噜~噜~13 分钟前
显式与隐式欧拉法(Explicit Euler and Implicit Euler)的个人理解
深度学习·显式欧拉法·隐式欧拉法·动力学系统
深鱼~15 分钟前
十分钟在 openEuler 上搭建本地 AI 服务:LocalAI 快速部署教程
人工智能
飞哥数智坊32 分钟前
不敢把个人信息喂给 AI?OneAIFW 简单搞定隐私保护!
人工智能
Coder_Boy_1 小时前
【人工智能应用技术】-基础实战-环境搭建(基于springAI+通义千问)(二)
数据库·人工智能
Jurio.1 小时前
Python Ray 分布式计算应用
linux·开发语言·python·深度学习·机器学习
爱加糖的橙子1 小时前
Dify升级到Dify v1.10.1-fix修复CVE-2025-55182漏洞
人工智能·python·ai
齐齐大魔王2 小时前
OpenCV
人工智能·opencv·计算机视觉
编程设计3662 小时前
pandas 中 DataFrame、mean()、groupby 和 fillna 函数的核心作用
机器学习·数据挖掘·pandas