C++第五弹---类与对象(二)

✨个人主页:熬夜学编程的小林

💗系列专栏: 【C语言详解】 【数据结构详解】【C++详解】

类与对象

1、类对象模型

1.1、如何计算类对象的大小

1.2、类对象的存储方式猜测

1.3、结构体内存对齐规则

2、this指针

2.1、this指针的引出

2.2、this指针的特性

2.3、C语言和C++实现Stack的对比

总结


1、类对象模型

1.1、如何计算类对象的大小

class A
{
public:
void PrintA()
{
cout<<_a<<endl;
}
private:
char _a;
};

问题:类中既可以有成员变量,又可以有成员函数,那么一个类的对象中包含了什么?如何计算
一个类的大小?

1.2、类对象的存储方式猜测

1、对象中包含类的各个成员

缺陷:每个对象中成员变量是不同的,但是调用同一份函数,如果按照此种方式存储,当一

个类创建多个对象时,每个对象中都会保存一份代码,相同代码保存多次,浪费空间 。那么

如何解决呢?
2、代码只保存一份,在对象中保存存放代码的地址
3、只保存成员变量,成员函数存放在公共的代码段

问题:对于上述三种存储方式,那计算机到底是按照那种方式来存储的?

我们再通过对下面的不同对象分别获取大小来分析看下

// 类中既有成员变量,又有成员函数
class A1 {
public:
void f1(){}
private:
int _a;//只计算成员变量的大小,为4字节
};
// 类中仅有成员函数
class A2 {
public:
void f2() {}
//只计算成员变量的大小,但是没有变量则算空类,空类规定为1字节
//为什么空类为1字节呢?因为实例化对象的标志是开辟的内存空间,竟然开辟了空间那么就不会是0,
//因此规定设为1字节
};
// 类中什么都没有---空类
class A3//空类为1字节
{};

sizeof(A1) : 4__ sizeof(A2) : 1 sizeof(A3) : 1
结论:

一个类的大小,实际就是该类中"成员变量"之和,当然要注意内存对齐
注意空类的大小,空类比较特殊,编译器给了空类一个字节来唯一标识这个类的对象。

1.3、结构体内存对齐规则

  1. 第一个成员在与结构体偏移量为0的地址处。

  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。

注意:对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。

VS中默认的对齐数为8

  1. 结构体总大小为:最大对齐数(所有变量类型最大者与默认对齐参数取最小)的整数倍。

  2. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

【面试题】

  1. 结构体怎么对齐? 为什么要进行内存对齐?

平台移植型好

不是所有的硬件平台都能访问任意地址上的数据;某些硬件平台只能只在某些地址访问某些特定类型的数据,否则抛出硬件异常,及遇到未对齐的边界直接就不进行读取数据了。

cpu处理效率高

从上图可以看出,对应两种存储方式,若CPU的读取粒度为4字节,

那么对于一个int 类型,若是按照内存对齐来存储,处理器只需要访存一次就可以读取完4个字节

若没有按照内存对其来读取,如上图所示,就需要访问内存两次才能读取出一个完整的int 类型变量具体过程为,第一次拿出 4个字节,丢弃掉第一个字节,第二次拿出4个字节,丢弃最后的三个字节,然后拼凑出一个完整的 int 类型的数据。

结论:结构体内存对齐是拿空间换取时间的做法。提高效率。

  1. 如何让结构体按照指定的对齐参数进行对齐?能否按照3、4、5即任意字节对齐?

结构体的对齐是有规定的,不可任意对齐,但有一条指令可以修改默认对齐数(#pragma pack(对齐数))结构体进行规定对齐是跟底层的硬件有关系的,每种硬件对于数据的读取是不同的,为了提高硬件读取数据的效率,所以在代码层进行了结构体内存对齐。

比如:假设一台机器有32根地址线,即该机器每次能够读取32位的数据,也就是4byte的数据。例如将以下代码在该机器下进行读取:

若内存对齐的方式进行读取

char _a变量总共读取一次(先读取四个字节,只取到第一个字节的数据即可),int _b总共读取一次。当读取完char _a 之后接着读取int _b 的时候恰好读取四个字节的内容,而这四个字节的内容恰好是int _b 的内容,刚好读取完成!

若不用内存对齐的方式进行存储:

char _a 读取一次,而 int _b 却要读取两次,读取一两个效率没啥影响,但是每种程序中读取的数据可能成千上万,效率就会有所降低!

总结:

不能进行任意对齐,也不可不进行对齐,因为可能会降低效率!

  1. 什么是大小端?如何测试某台机器是大端还是小端,有没有遇到过要考虑大小端的场景。

大小端是数据的两种存储方式,因为市面上电脑硬件的制造不同,不同的硬件对于数据的处理方式不同,常用的市面上的硬件机器存储方式大致有两种:大端存储和小端存储!

概念:

大端存储:数据的低位字节放到内存的高地址处,高位字节放到内存的低地址处,是大端存储

小端存储:数据的低位字节放到内存的低地址处,高位字节放到内存的高地址处,是小端存储

测试一台机器是大端还是小端:

方式一:

利用联合体的特性,可以得出机器是大端还是小端。因为联合体共用同一块空间,所以我们给两个成员 一个char 和一个int 给int成员数字1,随后通过char成员去读取数据,访问成员的时候是从低地址到高地址开始访问的!若取到的char结果是1,是小端存储。若是0则是大端存储!

方式二:

创建一个int类型大小变量,将它的地址强转成char*类型,然后解引用得到的结果为1则为小端存储。否则为大端存储。

代码:

#include <iostream>
using namespace std;
 
union S
{
    char a;
    int b;
};
 
int main()
{
    S s1;
    //给整型变量赋值1
    s1.b = 1;
 
    //通过char进行访问
    cout << (int)s1.a << endl;
 
    return 0;
}

结论:

通过联合体共用同一块空间的特性或者整型存储来判断大小端!

2、this指针

2.1、this指针的引出

我们先来定义一个日期类 Date

class Date
{
public:
void Init(int year, int month, int day)
{
_year = year;
_month = month;
_day = day;
}
void Print()
{
cout <<_year<< "-" <<_month << "-"<< _day <<endl;
}
private:
//此处为声明
int _year; // 年
int _month; // 月
int _day; // 日
};
int main()
{
//Date::_year++;//此处为声明,因此不能修改值
Date d1, d2;//实例化对象
d1._year++;//此处已经定义过了,因此可以进行修改
d1.Init(2022,1,11);//初始化函数 可以使用缺省参数
d2.Init(2022, 1, 12);
d1.Print();
d2.Print();
return 0;
}

对于上述类,有这样的一个问题:

Date类中有 Init 与 Print 两个成员函数,函数体中没有关于不同对象的区分,那当d1调用 Init 函
数时,该函数是如何知道应该设置d1对象,而不是设置d2对象呢?

C++中通过引入this指针解决该问题,即:C++编译器给每个"非静态的成员函数"增加了一个隐藏的指针参数,让该指针指向当前对象(函数运行时调用该函数的对象),在函数体中所有"成员变量"的操作,都是通过该指针去访问。只不过所有的操作对用户是透明的,即用户不需要来传递,编译器自动完成。

2.2、this指针的特性

  1. this指针的类型:类 类型* const,即成员函数中,不能给this指针赋值。
  2. 只能在"成员函数"的内部使用。
  3. this指针本质上是"成员函数"的形参,当对象调用成员函数时,将对象地址作为实参传递给
    this形参。所以对象中不存储this指针。
  4. this指针是"成员函数"第一个隐含的指针形参,一般情况由编译器通过ecx寄存器自动传
    递,不需要用户传递。

代码:

#include <iostream>
using namespace std;
 
//定义一个日期类
class Date
{
public:
    //初始化
    void Init(int year = 1, int month = 1, int day = 1)
    {
        //编译器会自动将对象的地址传进来 用this指针形参接收
        //可在函数内部显式的写this指针进行访问
        this->_year = year;
        this->_month = month;
        this->_day = day;
    }
 
    //打印函数
    void Print()
    {
        //切记this指针是不能被修改的因为是用const修饰的参数
        // this = nullptr;  会报错error:不可修改的左值
 
        //编译器会自动将对象的地址传进来 用this指针形参接收
        //可在函数内部显式的写this指针进行访问
        cout << this->_year << " - ";
        cout << this->_month << " - ";
        cout << this->_day << endl;
    }
private:
    int _year;
    int _month;
    int _day;
};
 
int main()
{
    //类的实例化对象 
    Date d1;
 
    //调用Init方法,
    //调用的时候编译器会自动的将对象的地址传进去
    // 且用this指针接收地址
    d1.Init(2023, 4, 30);
 
    //打印
    //调用的时候编译器会自动的将对象的地址传进去
    // 且用this指针接收地址
    d1.Print();
 
    //但我们不能显式的去传递对象的地址
    //会报错 error:函数调用中的参数太多
    //因为编译器已经默认传了对象的地址了
    //我们在传递就会出现错误
    //d1.Print(&d1);
 
    return 0;
}

图片:

总结:

对象在调用成员函数的时候,编译器会自动将对象的地址传给this指针,用户不可在进行显式传对象地址。在成员函数内部可以显式的通过this指针去访问成员变量,this指针默认是用const修饰的不可在成员函数内部修改this指针的值。this指针本质是一个形参,是存储在栈区上的!

【面试题】

  1. this指针存在哪里?

this指针本质是成员函数的形参,只是被编译器隐式的传递操作了。因为是函数的形参,是存在栈区上的,不存在对象中!
2. this指针可以为空吗?

this指针本质是用const修饰的,所以我们不能在成员函数内部将this指针置为空。而对象实例化之后必然是有地址的,空对象也是占用1个字节的空间。但是外部给this指针传一个空指针进来 this指针是可能为空的,但为空之后this指针是没有啥意义的,空指针是不能进行访问成员的,很危险!

即:this指针可能为nullptr

// 1.下面程序编译运行结果是? A、编译报错 B、运行崩溃 C、正常运行
class A
{
public:
void Print()
{
cout << "Print()" << endl;
}
private:
int _a;
};
int main()
{
A* p = nullptr;
p->Print();
return 0;
}

上面定义了一个A类 的指针p并给其赋予空值,通过指针去调用成员函数Print,此时在传的时候给this指针形参传过去的是p指针的值 也就是nullptr,而在成员函数内部并没有通过this指针去访问成员(进行解引用操作),this指针啥都没做,也没有用到this指针。即程序是可以正常运行的!

#include<iostream>
using namespace std;
// 1.下面程序编译运行结果是? A、编译报错 B、运行崩溃 C、正常运行
class A
{
public:
	void PrintA()
	{
		cout << _a << endl;
	}
private:
	int _a;
};
int main()
{
	A* p = nullptr;
	p->PrintA();
	return 0;
}

上面定义了一个A类 的指针p并给其赋予空值,通过指针去调用成员函数Print,此时在传的时候给this指针形参传过去的是p指针的值 也就是nullptr,而在成员函数内部通过this指针去访问成员_a(进行解引用操作),而此时的this指针是一个nullptr,对空指针解引用是不可行的。上述语法是没有问题的,编译时候是不会报错的,但访问是有问题的。即程序会出现运行崩溃!

2.3、C语言和C++实现Stack的对比

  1. C语言实现

    typedef int DataType;
    typedef struct Stack
    {
    DataType* array;
    int capacity;
    int size;
    }Stack;
    void StackInit(Stack* ps)
    {
    //初始化栈
    }
    void StackDestroy(Stack* ps)
    {
    //销毁栈
    }
    void CheckCapacity(Stack* ps)
    {
    //检查容量
    }
    void StackPush(Stack* ps, DataType data)
    {
    //入栈
    }
    int StackEmpty(Stack* ps)
    {
    //判断栈是否为空
    }
    void StackPop(Stack* ps)
    {
    //出栈
    }
    DataType StackTop(Stack* ps)
    {
    //获取栈顶数据
    }
    int StackSize(Stack* ps)
    {
    //计算栈有效数据个数
    }

可以看到,在用C语言实现时,Stack相关操作函数有以下共性:

每个函数的第一个参数都是Stack*。
函数中必须要对第一个参数检测,因为该参数可能会为NULL。
函数中都是通过Stack*参数操作栈的。
调用时必须传递Stack结构体变量的地址。
结构体中只能定义存放数据的结构,操作数据的方法不能放在结构体中,即数据和操作数据
的方式是分离开的,而且实现上相当复杂一点,涉及到大量指针操作,稍不注意可能就会出
错。

  1. C++实现

    typedef int DataType;
    class Stack
    {
    public://公共权限
    void Init()
    {
    //初始化栈
    }
    void Push(DataType data)
    {
    //入栈
    }
    void Pop()
    {
    //出栈
    }
    void Destroy()
    {
    //销毁栈
    }
    }
    private://私有权限
    void CheckCapacity()
    {
    //检查容量
    }
    private://私有权限
    //成员变量
    DataType* _array;
    int _capacity;
    int _size;
    };

C++中通过类可以将数据 以及 操作数据的方法进行完美结合,通过访问权限可以控制那些方法在
类外可以被调用
,即封装,在使用时就像使用自己的成员一样,更符合人类对一件事物的认知。

而且每个方法不需要传递Stack*的参数了,编译器编译之后该参数会自动还原,即C++中 Stack *

参数是编译器维护的,C语言中需用用户自己维护。

总结

本篇博客就结束啦,谢谢大家的观看,如果公主少年们有好的建议可以留言喔,谢谢大家啦!

相关推荐
迷迭所归处33 分钟前
C++ —— 以真我之名 如飞花般绚丽 - 智能指针
开发语言·c++
dvlinker35 分钟前
内存不足引发C++程序闪退崩溃问题的分析与总结
c++·内存泄漏·内存不足·malloc返回null·new抛出异常·abort强制终止进程·排查c++软件异常常用方法
沥川同学37 分钟前
跨平台应用开发框架(1)----Qt(组件篇)
c++·qt·udp·线程·tcp·qt5·qt6.3
Code哈哈笑38 分钟前
【Java 学习】构造器、static静态变量、static静态方法、static构造器、
java·开发语言·学习
是老余40 分钟前
Java三大特性:封装、继承、多态【详解】
java·开发语言
小馒头学python42 分钟前
【Python爬虫五十个小案例】爬取豆瓣电影Top250
开发语言·爬虫·python
尘浮生2 小时前
Java项目实战II基于微信小程序的南宁周边乡村游平台(开发文档+数据库+源码)
java·开发语言·数据库·spring boot·微信小程序·小程序·maven
wangjing_05224 小时前
C语言练习.if.else语句.strstr
c语言·开发语言
Tony_long74834 小时前
Python学习——字符串操作方法
开发语言·c#
SoraLuna4 小时前
「Mac玩转仓颉内测版26」基础篇6 - 字符类型详解
开发语言·算法·macos·cangjie