19 OpenCV 霍夫曼变换检测圆

文章目录

cv::HoughCircles

因为霍夫圆检测对噪声比较敏感,所以首先要对图像做中值滤波。 基于效率考虑,Opencv中实现的霍夫变换圆检测是基于图像梯度的实现,分为两步:

  1. 检测边缘,发现可能的圆心
  2. 基于第一步的基础上从候选圆心开始计算最佳半径大小

算子参数

c 复制代码
HoughCircles(
InputArray image, // 输入图像 ,必须是8位的单通道灰度图像
OutputArray circles, // 输出结果,发现的圆信息
Int method, // 方法 - HOUGH_GRADIENT
Double dp, // dp = 1; 
Double mindist, // 10 最短距离-可以分辨是两个圆的,否则认为是同心圆- src_gray.rows/8
Double param1, // canny edge detection low threshold
Double param2, // 中心点累加器阈值 -- 候选圆心
Int minradius, // 最小半径
Int maxradius//最大半径 
)

示例

c 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;

Mat src, src_gray, dst;

const char* output_title = "final image";
int main()
{
	src = imread("test.png");//读取图片
	if (src.empty())
	{
		cout << "could not load img...";
		return -1;
	}
	namedWindow(output_title);//设置窗口名称
	imshow("test", src);

	// 中值滤波
	Mat moutput;
	medianBlur(src, moutput, 3);
	cvtColor(moutput, moutput, COLOR_BGR2GRAY);

	// 霍夫圆检测
	vector<Vec3f> pcircles;

	HoughCircles(moutput, pcircles, HOUGH_GRADIENT, 1, 10, 100, 30, 5, 50);
	src.copyTo(dst);
	for (size_t i = 0; i < pcircles.size(); i++) 
	{
		Vec3f cc = pcircles[i];
		circle(dst, Point(cc[0], cc[1]), cc[2], Scalar(0, 0, 255), 2, LINE_AA);//绘制圆心
		circle(dst, Point(cc[0], cc[1]), 2, Scalar(198, 23, 155), 2, LINE_AA);
	}

	imshow(output_title, dst);
	waitKey(0);
	return 0;
}
相关推荐
视觉&物联智能几秒前
【杂谈】-企业人工智能的变革与机遇
人工智能·ai·aigc·agi
图生生10 分钟前
电商主图快速修改方案:AI工具实现元素自由增删,降低开发与设计成本
人工智能
Deepoch11 分钟前
Deepoc具身模型开发板:重新定义机器人智能化的技术底座
人工智能·机器人·具身模型·deepoc
G***技14 分钟前
搭载RK3588处理器,IM1-707核心板撑起建筑机器人“精准+高效”
人工智能
lingling00916 分钟前
2026 年 BI 发展新趋势:AI 功能如何让数据分析工具 “思考” 和 “对话”?
大数据·人工智能·数据分析
鹧鸪云光伏18 分钟前
光伏项目多,如何高效管理?
大数据·人工智能·光伏
weixin_3975780221 分钟前
LLM应用开发七:Agent进阶
人工智能
谢的2元王国30 分钟前
这是跑通实用rag的日志记录 重点关注一点 句子向量化模型的选择 以及召回结果后 重排交叉编码的精进
人工智能·深度学习
LeapMay32 分钟前
AdaWorld: Learning Adaptable World Models with Latent Actions(ICML 2025)
人工智能
蝎蟹居39 分钟前
GBT 4706.1-2024逐句解读系列(26) 第7.6条款:正确使用符号标识
人工智能·单片机·嵌入式硬件·物联网·安全