19 OpenCV 霍夫曼变换检测圆

文章目录

cv::HoughCircles

因为霍夫圆检测对噪声比较敏感,所以首先要对图像做中值滤波。 基于效率考虑,Opencv中实现的霍夫变换圆检测是基于图像梯度的实现,分为两步:

  1. 检测边缘,发现可能的圆心
  2. 基于第一步的基础上从候选圆心开始计算最佳半径大小

算子参数

c 复制代码
HoughCircles(
InputArray image, // 输入图像 ,必须是8位的单通道灰度图像
OutputArray circles, // 输出结果,发现的圆信息
Int method, // 方法 - HOUGH_GRADIENT
Double dp, // dp = 1; 
Double mindist, // 10 最短距离-可以分辨是两个圆的,否则认为是同心圆- src_gray.rows/8
Double param1, // canny edge detection low threshold
Double param2, // 中心点累加器阈值 -- 候选圆心
Int minradius, // 最小半径
Int maxradius//最大半径 
)

示例

c 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;

Mat src, src_gray, dst;

const char* output_title = "final image";
int main()
{
	src = imread("test.png");//读取图片
	if (src.empty())
	{
		cout << "could not load img...";
		return -1;
	}
	namedWindow(output_title);//设置窗口名称
	imshow("test", src);

	// 中值滤波
	Mat moutput;
	medianBlur(src, moutput, 3);
	cvtColor(moutput, moutput, COLOR_BGR2GRAY);

	// 霍夫圆检测
	vector<Vec3f> pcircles;

	HoughCircles(moutput, pcircles, HOUGH_GRADIENT, 1, 10, 100, 30, 5, 50);
	src.copyTo(dst);
	for (size_t i = 0; i < pcircles.size(); i++) 
	{
		Vec3f cc = pcircles[i];
		circle(dst, Point(cc[0], cc[1]), cc[2], Scalar(0, 0, 255), 2, LINE_AA);//绘制圆心
		circle(dst, Point(cc[0], cc[1]), 2, Scalar(198, 23, 155), 2, LINE_AA);
	}

	imshow(output_title, dst);
	waitKey(0);
	return 0;
}
相关推荐
Mao.O1 小时前
开源项目“AI思维圆桌”的介绍和对于当前AI编程的思考
人工智能
jake don1 小时前
AI 深度学习路线
人工智能·深度学习
信创天地1 小时前
信创场景软件兼容性测试实战:适配国产软硬件生态,破解运行故障难题
人工智能·开源·dubbo·运维开发·risc-v
幻云20101 小时前
Python深度学习:从筑基到登仙
前端·javascript·vue.js·人工智能·python
无风听海2 小时前
CBOW 模型中的输出层
人工智能·机器学习
汇智信科2 小时前
智慧矿山和工业大数据解决方案“智能设备管理系统”
大数据·人工智能·工业大数据·智能矿山·汇智信科·智能设备管理系统
静听松涛1332 小时前
跨语言低资源场景下的零样本迁移
人工智能
SEO_juper2 小时前
AI+SEO全景决策指南:10大高价值方法、核心挑战与成本效益分析
人工智能·搜索引擎·seo·数字营销
阿里云大数据AI技术2 小时前
Hologres Dynamic Table 在淘天价格力的业务实践
大数据·人工智能·阿里云·hologres·增量刷新