19 OpenCV 霍夫曼变换检测圆

文章目录

cv::HoughCircles

因为霍夫圆检测对噪声比较敏感,所以首先要对图像做中值滤波。 基于效率考虑,Opencv中实现的霍夫变换圆检测是基于图像梯度的实现,分为两步:

  1. 检测边缘,发现可能的圆心
  2. 基于第一步的基础上从候选圆心开始计算最佳半径大小

算子参数

c 复制代码
HoughCircles(
InputArray image, // 输入图像 ,必须是8位的单通道灰度图像
OutputArray circles, // 输出结果,发现的圆信息
Int method, // 方法 - HOUGH_GRADIENT
Double dp, // dp = 1; 
Double mindist, // 10 最短距离-可以分辨是两个圆的,否则认为是同心圆- src_gray.rows/8
Double param1, // canny edge detection low threshold
Double param2, // 中心点累加器阈值 -- 候选圆心
Int minradius, // 最小半径
Int maxradius//最大半径 
)

示例

c 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;

Mat src, src_gray, dst;

const char* output_title = "final image";
int main()
{
	src = imread("test.png");//读取图片
	if (src.empty())
	{
		cout << "could not load img...";
		return -1;
	}
	namedWindow(output_title);//设置窗口名称
	imshow("test", src);

	// 中值滤波
	Mat moutput;
	medianBlur(src, moutput, 3);
	cvtColor(moutput, moutput, COLOR_BGR2GRAY);

	// 霍夫圆检测
	vector<Vec3f> pcircles;

	HoughCircles(moutput, pcircles, HOUGH_GRADIENT, 1, 10, 100, 30, 5, 50);
	src.copyTo(dst);
	for (size_t i = 0; i < pcircles.size(); i++) 
	{
		Vec3f cc = pcircles[i];
		circle(dst, Point(cc[0], cc[1]), cc[2], Scalar(0, 0, 255), 2, LINE_AA);//绘制圆心
		circle(dst, Point(cc[0], cc[1]), 2, Scalar(198, 23, 155), 2, LINE_AA);
	}

	imshow(output_title, dst);
	waitKey(0);
	return 0;
}
相关推荐
AndrewHZ16 小时前
【图像处理基石】什么是光栅化?
图像处理·人工智能·算法·计算机视觉·3d·图形渲染·光栅化
阿星AI工作室16 小时前
第一次围观AI打牌,明星模型居然集体翻车?丨开源项目CATArena拆解
人工智能
jqrbcts16 小时前
关于发那科机器人如何时时把角度发给PLC
java·服务器·网络·人工智能
Rainly200016 小时前
深度学习旅程之数学统计底座
人工智能·深度学习
QBoson16 小时前
AI设计RNA开关新突破:受限玻尔兹曼机让人工分子“听懂”代谢物信号
人工智能
paopao_wu16 小时前
AI编程工具-Trae: SOLO模式
人工智能·ai编程·trae
AC赳赳老秦17 小时前
行业数据 benchmark 对比:DeepSeek上传数据生成竞品差距分析报告
开发语言·网络·人工智能·python·matplotlib·涛思数据·deepseek
小鸡吃米…17 小时前
带Python的人工智能——深度学习
人工智能·python·深度学习
AC赳赳老秦17 小时前
财务数据智能解读:DeepSeek分析利润表生成异常波动原因报告
数据库·人工智能·postgresql·zookeeper·测试用例·时序数据库·deepseek
沛沛老爹17 小时前
Web开发者进阶AI:Advanced-RAG上下文压缩与过滤原理及实战应用
人工智能·rag·faq·文档细粒度·自适应切分