19 OpenCV 霍夫曼变换检测圆

文章目录

cv::HoughCircles

因为霍夫圆检测对噪声比较敏感,所以首先要对图像做中值滤波。 基于效率考虑,Opencv中实现的霍夫变换圆检测是基于图像梯度的实现,分为两步:

  1. 检测边缘,发现可能的圆心
  2. 基于第一步的基础上从候选圆心开始计算最佳半径大小

算子参数

c 复制代码
HoughCircles(
InputArray image, // 输入图像 ,必须是8位的单通道灰度图像
OutputArray circles, // 输出结果,发现的圆信息
Int method, // 方法 - HOUGH_GRADIENT
Double dp, // dp = 1; 
Double mindist, // 10 最短距离-可以分辨是两个圆的,否则认为是同心圆- src_gray.rows/8
Double param1, // canny edge detection low threshold
Double param2, // 中心点累加器阈值 -- 候选圆心
Int minradius, // 最小半径
Int maxradius//最大半径 
)

示例

c 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;

Mat src, src_gray, dst;

const char* output_title = "final image";
int main()
{
	src = imread("test.png");//读取图片
	if (src.empty())
	{
		cout << "could not load img...";
		return -1;
	}
	namedWindow(output_title);//设置窗口名称
	imshow("test", src);

	// 中值滤波
	Mat moutput;
	medianBlur(src, moutput, 3);
	cvtColor(moutput, moutput, COLOR_BGR2GRAY);

	// 霍夫圆检测
	vector<Vec3f> pcircles;

	HoughCircles(moutput, pcircles, HOUGH_GRADIENT, 1, 10, 100, 30, 5, 50);
	src.copyTo(dst);
	for (size_t i = 0; i < pcircles.size(); i++) 
	{
		Vec3f cc = pcircles[i];
		circle(dst, Point(cc[0], cc[1]), cc[2], Scalar(0, 0, 255), 2, LINE_AA);//绘制圆心
		circle(dst, Point(cc[0], cc[1]), 2, Scalar(198, 23, 155), 2, LINE_AA);
	}

	imshow(output_title, dst);
	waitKey(0);
	return 0;
}
相关推荐
代码AI弗森2 小时前
从 IDE 到 CLI:AI 编程代理工具全景与落地指南(附对比矩阵与脚本化示例)
ide·人工智能·矩阵
007tg5 小时前
从ChatGPT家长控制功能看AI合规与技术应对策略
人工智能·chatgpt·企业数据安全
Memene摸鱼日报5 小时前
「Memene 摸鱼日报 2025.9.11」腾讯推出命令行编程工具 CodeBuddy Code, ChatGPT 开发者模式迎来 MCP 全面支持
人工智能·chatgpt·agi
linjoe995 小时前
【Deep Learning】Ubuntu配置深度学习环境
人工智能·深度学习·ubuntu
先做个垃圾出来………6 小时前
残差连接的概念与作用
人工智能·算法·机器学习·语言模型·自然语言处理
AI小书房7 小时前
【人工智能通识专栏】第十三讲:图像处理
人工智能
fanstuck7 小时前
基于大模型的个性化推荐系统实现探索与应用
大数据·人工智能·语言模型·数据挖掘
多看书少吃饭8 小时前
基于 OpenCV 的眼球识别算法以及青光眼算法识别
人工智能·opencv·计算机视觉
一条数据库8 小时前
南京方言数据集|300小时高质量自然对话音频|专业录音棚采集|方言语音识别模型训练|情感计算研究|方言保护文化遗产数字化|语音情感识别|方言对话系统开发
人工智能·音视频·语音识别