19 OpenCV 霍夫曼变换检测圆

文章目录

cv::HoughCircles

因为霍夫圆检测对噪声比较敏感,所以首先要对图像做中值滤波。 基于效率考虑,Opencv中实现的霍夫变换圆检测是基于图像梯度的实现,分为两步:

  1. 检测边缘,发现可能的圆心
  2. 基于第一步的基础上从候选圆心开始计算最佳半径大小

算子参数

c 复制代码
HoughCircles(
InputArray image, // 输入图像 ,必须是8位的单通道灰度图像
OutputArray circles, // 输出结果,发现的圆信息
Int method, // 方法 - HOUGH_GRADIENT
Double dp, // dp = 1; 
Double mindist, // 10 最短距离-可以分辨是两个圆的,否则认为是同心圆- src_gray.rows/8
Double param1, // canny edge detection low threshold
Double param2, // 中心点累加器阈值 -- 候选圆心
Int minradius, // 最小半径
Int maxradius//最大半径 
)

示例

c 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;

Mat src, src_gray, dst;

const char* output_title = "final image";
int main()
{
	src = imread("test.png");//读取图片
	if (src.empty())
	{
		cout << "could not load img...";
		return -1;
	}
	namedWindow(output_title);//设置窗口名称
	imshow("test", src);

	// 中值滤波
	Mat moutput;
	medianBlur(src, moutput, 3);
	cvtColor(moutput, moutput, COLOR_BGR2GRAY);

	// 霍夫圆检测
	vector<Vec3f> pcircles;

	HoughCircles(moutput, pcircles, HOUGH_GRADIENT, 1, 10, 100, 30, 5, 50);
	src.copyTo(dst);
	for (size_t i = 0; i < pcircles.size(); i++) 
	{
		Vec3f cc = pcircles[i];
		circle(dst, Point(cc[0], cc[1]), cc[2], Scalar(0, 0, 255), 2, LINE_AA);//绘制圆心
		circle(dst, Point(cc[0], cc[1]), 2, Scalar(198, 23, 155), 2, LINE_AA);
	}

	imshow(output_title, dst);
	waitKey(0);
	return 0;
}
相关推荐
唐某人丶17 分钟前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc
FIT2CLOUD飞致云35 分钟前
九月月报丨MaxKB在不同规模医疗机构的应用进展汇报
人工智能·开源
阿里云大数据AI技术36 分钟前
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Next系列模型
人工智能
袁庭新1 小时前
全球首位AI机器人部长,背负反腐重任
人工智能·aigc
机器之心1 小时前
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
人工智能·openai
算家计算1 小时前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc
量子位1 小时前
马斯克周末血裁xAI 500人
人工智能·ai编程
算家计算2 小时前
OpenAI最强编程模型GPT-5-Codex发布!可独立编程7小时,编程效率提升10倍
人工智能·ai编程·资讯
聚客AI3 小时前
🌟大模型为什么产生幻觉?预训练到推理的漏洞全揭秘
人工智能·llm·掘金·日新计划
Juchecar3 小时前
一文讲清 nn.Sequential 等容器类
人工智能