19 OpenCV 霍夫曼变换检测圆

文章目录

cv::HoughCircles

因为霍夫圆检测对噪声比较敏感,所以首先要对图像做中值滤波。 基于效率考虑,Opencv中实现的霍夫变换圆检测是基于图像梯度的实现,分为两步:

  1. 检测边缘,发现可能的圆心
  2. 基于第一步的基础上从候选圆心开始计算最佳半径大小

算子参数

c 复制代码
HoughCircles(
InputArray image, // 输入图像 ,必须是8位的单通道灰度图像
OutputArray circles, // 输出结果,发现的圆信息
Int method, // 方法 - HOUGH_GRADIENT
Double dp, // dp = 1; 
Double mindist, // 10 最短距离-可以分辨是两个圆的,否则认为是同心圆- src_gray.rows/8
Double param1, // canny edge detection low threshold
Double param2, // 中心点累加器阈值 -- 候选圆心
Int minradius, // 最小半径
Int maxradius//最大半径 
)

示例

c 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;

Mat src, src_gray, dst;

const char* output_title = "final image";
int main()
{
	src = imread("test.png");//读取图片
	if (src.empty())
	{
		cout << "could not load img...";
		return -1;
	}
	namedWindow(output_title);//设置窗口名称
	imshow("test", src);

	// 中值滤波
	Mat moutput;
	medianBlur(src, moutput, 3);
	cvtColor(moutput, moutput, COLOR_BGR2GRAY);

	// 霍夫圆检测
	vector<Vec3f> pcircles;

	HoughCircles(moutput, pcircles, HOUGH_GRADIENT, 1, 10, 100, 30, 5, 50);
	src.copyTo(dst);
	for (size_t i = 0; i < pcircles.size(); i++) 
	{
		Vec3f cc = pcircles[i];
		circle(dst, Point(cc[0], cc[1]), cc[2], Scalar(0, 0, 255), 2, LINE_AA);//绘制圆心
		circle(dst, Point(cc[0], cc[1]), 2, Scalar(198, 23, 155), 2, LINE_AA);
	}

	imshow(output_title, dst);
	waitKey(0);
	return 0;
}
相关推荐
风流倜傥唐伯虎4 分钟前
N卡深度学习环境配置
人工智能·深度学习·cuda
winfreedoms31 分钟前
ROS2语音&ai与控制——黑马程序员ROS2课程上课笔记(6)
人工智能·笔记
呆萌很31 分钟前
深入浅出FPN:目标检测中的特征金字塔网络
人工智能
OEC小胖胖44 分钟前
DeepSeek导出文档
人工智能·效率工具·知识管理·ai工作流·deepseek
得一录1 小时前
蒸汽、钢铁与无限心智(Steam, Steel, and Infinite Minds)全文
人工智能·aigc
大模型任我行1 小时前
英伟达:物理感知的多模态评判模型
人工智能·语言模型·自然语言处理·论文笔记
laplace01231 小时前
IcePop技术
人工智能·大模型·agent·claude·rag·skills·icepop
l1t2 小时前
DeepSeek总结的Nanbeige4.1-3B:一个具备推理、对齐与行动能力的小型通用模型
人工智能
一只理智恩2 小时前
AI 实战应用:从“搜索式问答“到“理解式助教“
人工智能·python·语言模型·golang