19 OpenCV 霍夫曼变换检测圆

文章目录

cv::HoughCircles

因为霍夫圆检测对噪声比较敏感,所以首先要对图像做中值滤波。 基于效率考虑,Opencv中实现的霍夫变换圆检测是基于图像梯度的实现,分为两步:

  1. 检测边缘,发现可能的圆心
  2. 基于第一步的基础上从候选圆心开始计算最佳半径大小

算子参数

c 复制代码
HoughCircles(
InputArray image, // 输入图像 ,必须是8位的单通道灰度图像
OutputArray circles, // 输出结果,发现的圆信息
Int method, // 方法 - HOUGH_GRADIENT
Double dp, // dp = 1; 
Double mindist, // 10 最短距离-可以分辨是两个圆的,否则认为是同心圆- src_gray.rows/8
Double param1, // canny edge detection low threshold
Double param2, // 中心点累加器阈值 -- 候选圆心
Int minradius, // 最小半径
Int maxradius//最大半径 
)

示例

c 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;

Mat src, src_gray, dst;

const char* output_title = "final image";
int main()
{
	src = imread("test.png");//读取图片
	if (src.empty())
	{
		cout << "could not load img...";
		return -1;
	}
	namedWindow(output_title);//设置窗口名称
	imshow("test", src);

	// 中值滤波
	Mat moutput;
	medianBlur(src, moutput, 3);
	cvtColor(moutput, moutput, COLOR_BGR2GRAY);

	// 霍夫圆检测
	vector<Vec3f> pcircles;

	HoughCircles(moutput, pcircles, HOUGH_GRADIENT, 1, 10, 100, 30, 5, 50);
	src.copyTo(dst);
	for (size_t i = 0; i < pcircles.size(); i++) 
	{
		Vec3f cc = pcircles[i];
		circle(dst, Point(cc[0], cc[1]), cc[2], Scalar(0, 0, 255), 2, LINE_AA);//绘制圆心
		circle(dst, Point(cc[0], cc[1]), 2, Scalar(198, 23, 155), 2, LINE_AA);
	}

	imshow(output_title, dst);
	waitKey(0);
	return 0;
}
相关推荐
LaughingZhu3 分钟前
Product Hunt 每日热榜 | 2026-01-12
人工智能·经验分享·深度学习·神经网络·产品运营
美团技术团队6 分钟前
AAAI 2026 | 美团技术团队学术论文精选
人工智能
不如自挂东南吱9 分钟前
空间相关性 和 怎么捕捉空间相关性
人工智能·深度学习·算法·机器学习·时序数据库
xiaozhazha_10 分钟前
2026 新规落地,金融级远程会议软件选型:快鹭会议AI 与合规技术双驱动
人工智能·金融
لا معنى له12 分钟前
学习笔记:Restormer: Efficient Transformer for High-Resolution Image Restoration
图像处理·笔记·学习·计算机视觉·transformer
小鸡吃米…19 分钟前
机器学习中的简单线性回归
人工智能·机器学习·线性回归
程途拾光15830 分钟前
中文界面跨职能泳道图制作教程 PC
大数据·论文阅读·人工智能·信息可视化·流程图
长颈鹿仙女32 分钟前
深度学习详解拟合,过拟合,欠拟合
人工智能·深度学习
CORNERSTONE36535 分钟前
智能制造为什么要实现EMS和MES的集成
大数据·人工智能·制造
weixin_6688986438 分钟前
Ascend LlamaFactory微调书生模型
人工智能