19 OpenCV 霍夫曼变换检测圆

文章目录

cv::HoughCircles

因为霍夫圆检测对噪声比较敏感,所以首先要对图像做中值滤波。 基于效率考虑,Opencv中实现的霍夫变换圆检测是基于图像梯度的实现,分为两步:

  1. 检测边缘,发现可能的圆心
  2. 基于第一步的基础上从候选圆心开始计算最佳半径大小

算子参数

c 复制代码
HoughCircles(
InputArray image, // 输入图像 ,必须是8位的单通道灰度图像
OutputArray circles, // 输出结果,发现的圆信息
Int method, // 方法 - HOUGH_GRADIENT
Double dp, // dp = 1; 
Double mindist, // 10 最短距离-可以分辨是两个圆的,否则认为是同心圆- src_gray.rows/8
Double param1, // canny edge detection low threshold
Double param2, // 中心点累加器阈值 -- 候选圆心
Int minradius, // 最小半径
Int maxradius//最大半径 
)

示例

c 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;

Mat src, src_gray, dst;

const char* output_title = "final image";
int main()
{
	src = imread("test.png");//读取图片
	if (src.empty())
	{
		cout << "could not load img...";
		return -1;
	}
	namedWindow(output_title);//设置窗口名称
	imshow("test", src);

	// 中值滤波
	Mat moutput;
	medianBlur(src, moutput, 3);
	cvtColor(moutput, moutput, COLOR_BGR2GRAY);

	// 霍夫圆检测
	vector<Vec3f> pcircles;

	HoughCircles(moutput, pcircles, HOUGH_GRADIENT, 1, 10, 100, 30, 5, 50);
	src.copyTo(dst);
	for (size_t i = 0; i < pcircles.size(); i++) 
	{
		Vec3f cc = pcircles[i];
		circle(dst, Point(cc[0], cc[1]), cc[2], Scalar(0, 0, 255), 2, LINE_AA);//绘制圆心
		circle(dst, Point(cc[0], cc[1]), 2, Scalar(198, 23, 155), 2, LINE_AA);
	}

	imshow(output_title, dst);
	waitKey(0);
	return 0;
}
相关推荐
塔能物联运维26 分钟前
设备边缘计算任务调度卡顿 后来动态分配CPU/GPU资源
人工智能·边缘计算
过期的秋刀鱼!36 分钟前
人工智能-深度学习-线性回归
人工智能·深度学习
木头左36 分钟前
高级LSTM架构在量化交易中的特殊入参要求与实现
人工智能·rnn·lstm
IE061 小时前
深度学习系列84:使用kokoros生成tts语音
人工智能·深度学习
欧阳天羲1 小时前
#前端开发未来3年(2026-2028)核心趋势与AI应用实践
人工智能·前端框架
IE061 小时前
深度学习系列83:使用outetts
人工智能·深度学习
水中加点糖1 小时前
源码运行RagFlow并实现AI搜索(文搜文档、文搜图、视频理解)与自定义智能体(一)
人工智能·二次开发·ai搜索·文档解析·ai知识库·ragflow·mineru
imbackneverdie1 小时前
如何用AI工具,把文献综述从“耗时费力”变成“高效产出”?
人工智能·经验分享·考研·自然语言处理·aigc·ai写作
黎燃2 小时前
最强「学业成绩分析压力感知型 AI 心理陪伴」智能体—基于腾讯元器×TextIn大模型加速器×混元大模型的实战构建
人工智能
AKAMAI2 小时前
预先构建的CNCF流水线:从Git到在Kubernetes上运行
人工智能·云计算