论文阅读:Editing Large Language Models: Problems, Methods, and Opportunities

Editing Large Language Models: Problems, Methods, and Opportunities

论文链接
代码链接

摘要

由于大语言模型(LLM)中可能存在一些过时的、不适当的和错误的信息,所以有必要纠正模型中的相关信息。如何高效地修改模型中的相关信息而不影响无关的信息,是模型编辑方法试图解决的问题。本篇文章对大语言模型上的模型编辑方法(model editing)进行了分类介绍和评估,并提出了一个新的基准,包括评估数据集和评估标准。

分类

LLM上的模型编辑方法主要包括两类:(a) 模型参数不变(Preserving LLMs' Parameters);(b) 模型参数改变(Preserving LLMs' Parameters)。模型参数不变的方法又可以分为额外参数 (Additional Parameters) 和基于记忆的 (Memory-based Model)方法。而模型参数改变的方法又可以分为定位然后编辑类(Locate-Then-Edit)和元学习类(Meta-learning)。

Methods for Preserving LLMs' Parameters

Memory-based Model 该类方法又两类分支,一种是借助一个在新的事实上训练的模型辅助 预测,另一种是借助检索 到的知识作为提示词的一部分信息。
Additional Parameters 该类方法引入额外的可训练参数,这些参数根据新的事实数据集训练,而模型的原始参数不变。

Methods for Modifying LLMs' Parameters

Locate-Then-Edit 该类方法首先定位到特定知识相关的参数,然后直接进行修改(无需额外的训练和微调)。
Meta-learning 该类方法应用一个超网络学习更新模型参数的变量。

相关推荐
Coding茶水间几秒前
基于深度学习的反光衣检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
得贤招聘官5 分钟前
AI 重塑人力资源:HR 职能的进化与实践
人工智能
_codemonster33 分钟前
AI大模型入门到实战系列(八)文本聚类
人工智能·数据挖掘·聚类
AI码上来1 小时前
眼神交流+触摸感应,打造更贴心的小智AI:原理和实现
人工智能
露临霜1 小时前
重启机器学习
人工智能·机器学习
IT·小灰灰1 小时前
告别“翻墙“烦恼:DMXAPI让Gemini-3-pro-thinking调用快如闪电
网络·人工智能·python·深度学习·云计算
gwd2001 小时前
如何快速设置 Docker 代理设置
运维·人工智能·docker·容器
DatGuy1 小时前
Week 29: 深度学习补遗:MoE的稳定性机制与路由策略实现
人工智能·深度学习
mys55181 小时前
杨建允:AI搜索趋势对留学服务行业的影响
人工智能·geo·ai搜索优化·geo优化·ai引擎优化
Curvatureflight1 小时前
前端性能优化实战:从3秒到300ms的加载速度提升
前端·人工智能·性能优化