论文阅读:Editing Large Language Models: Problems, Methods, and Opportunities

Editing Large Language Models: Problems, Methods, and Opportunities

论文链接
代码链接

摘要

由于大语言模型(LLM)中可能存在一些过时的、不适当的和错误的信息,所以有必要纠正模型中的相关信息。如何高效地修改模型中的相关信息而不影响无关的信息,是模型编辑方法试图解决的问题。本篇文章对大语言模型上的模型编辑方法(model editing)进行了分类介绍和评估,并提出了一个新的基准,包括评估数据集和评估标准。

分类

LLM上的模型编辑方法主要包括两类:(a) 模型参数不变(Preserving LLMs' Parameters);(b) 模型参数改变(Preserving LLMs' Parameters)。模型参数不变的方法又可以分为额外参数 (Additional Parameters) 和基于记忆的 (Memory-based Model)方法。而模型参数改变的方法又可以分为定位然后编辑类(Locate-Then-Edit)和元学习类(Meta-learning)。

Methods for Preserving LLMs' Parameters

Memory-based Model 该类方法又两类分支,一种是借助一个在新的事实上训练的模型辅助 预测,另一种是借助检索 到的知识作为提示词的一部分信息。
Additional Parameters 该类方法引入额外的可训练参数,这些参数根据新的事实数据集训练,而模型的原始参数不变。

Methods for Modifying LLMs' Parameters

Locate-Then-Edit 该类方法首先定位到特定知识相关的参数,然后直接进行修改(无需额外的训练和微调)。
Meta-learning 该类方法应用一个超网络学习更新模型参数的变量。

相关推荐
赋创小助手1 分钟前
超微2U高密度服务器AS-2126HS-TN评测(双AMD EPYC 9005 Turin)
运维·服务器·人工智能·深度学习·神经网络·自然语言处理·架构
AI营销资讯站5 分钟前
AI Marketing Expert赢在2026决胜AI营销的iPhone时刻原圈科技 · 私域AI营销专家
大数据·人工智能
幻云20109 分钟前
Python机器学习:筑基与实践
前端·人工智能·python
ZCXZ12385296a10 分钟前
【深度学习实战】基于YOLO11-ConvNeXtV2的软垫物体检测与分类详解
人工智能·深度学习·分类
wfeqhfxz258878212 分钟前
花椒种植环境中的异物检测与分类:基于QueryInst模型的10类杂质识别
人工智能·分类·数据挖掘
人工智能AI技术18 分钟前
【Agent从入门到实践】18 脚本化编程:批量执行、自动化逻辑
人工智能·python
向量引擎24 分钟前
[硬核架构] 2026 企业级 AI 网关落地指南:从“连接超时”到“秒级响应”的架构演进(附 Python/Java 源码)
人工智能·python·gpt·ai作画·架构·aigc·api调用
Aloudata28 分钟前
数据语义层 vs 宽表模式:哪种架构更适合 AI 时代的数据分析?
人工智能·架构·数据挖掘·数据分析·数据治理
OLOLOadsd12332 分钟前
基于改进YOLOv13的长曲棍球角色识别与装备检测系统
人工智能·yolo·目标跟踪
高频交易dragon33 分钟前
An Impulse Control Approach to Market Making in a Hawkes LOB Market从论文到生产
人工智能·算法·机器学习