论文阅读:Editing Large Language Models: Problems, Methods, and Opportunities

Editing Large Language Models: Problems, Methods, and Opportunities

论文链接
代码链接

摘要

由于大语言模型(LLM)中可能存在一些过时的、不适当的和错误的信息,所以有必要纠正模型中的相关信息。如何高效地修改模型中的相关信息而不影响无关的信息,是模型编辑方法试图解决的问题。本篇文章对大语言模型上的模型编辑方法(model editing)进行了分类介绍和评估,并提出了一个新的基准,包括评估数据集和评估标准。

分类

LLM上的模型编辑方法主要包括两类:(a) 模型参数不变(Preserving LLMs' Parameters);(b) 模型参数改变(Preserving LLMs' Parameters)。模型参数不变的方法又可以分为额外参数 (Additional Parameters) 和基于记忆的 (Memory-based Model)方法。而模型参数改变的方法又可以分为定位然后编辑类(Locate-Then-Edit)和元学习类(Meta-learning)。

Methods for Preserving LLMs' Parameters

Memory-based Model 该类方法又两类分支,一种是借助一个在新的事实上训练的模型辅助 预测,另一种是借助检索 到的知识作为提示词的一部分信息。
Additional Parameters 该类方法引入额外的可训练参数,这些参数根据新的事实数据集训练,而模型的原始参数不变。

Methods for Modifying LLMs' Parameters

Locate-Then-Edit 该类方法首先定位到特定知识相关的参数,然后直接进行修改(无需额外的训练和微调)。
Meta-learning 该类方法应用一个超网络学习更新模型参数的变量。

相关推荐
浠寒AI1 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
weixin_505154462 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
Best_Me072 小时前
深度学习模块缝合
人工智能·深度学习
YuTaoShao2 小时前
【论文阅读】YOLOv8在单目下视多车目标检测中的应用
人工智能·yolo·目标检测
算家计算3 小时前
字节开源代码模型——Seed-Coder 本地部署教程,模型自驱动数据筛选,让每行代码都精准落位!
人工智能·开源
伪_装3 小时前
大语言模型(LLM)面试问题集
人工智能·语言模型·自然语言处理
gs801403 小时前
Tavily 技术详解:为大模型提供实时搜索增强的利器
人工智能·rag
music&movie3 小时前
算法工程师认知水平要求总结
人工智能·算法
量子位4 小时前
苹果炮轰推理模型全是假思考!4 个游戏戳破神话,o3/DeepSeek 高难度全崩溃
人工智能·deepseek
黑鹿0224 小时前
机器学习基础(四) 决策树
人工智能·决策树·机器学习