论文阅读:Editing Large Language Models: Problems, Methods, and Opportunities

Editing Large Language Models: Problems, Methods, and Opportunities

论文链接
代码链接

摘要

由于大语言模型(LLM)中可能存在一些过时的、不适当的和错误的信息,所以有必要纠正模型中的相关信息。如何高效地修改模型中的相关信息而不影响无关的信息,是模型编辑方法试图解决的问题。本篇文章对大语言模型上的模型编辑方法(model editing)进行了分类介绍和评估,并提出了一个新的基准,包括评估数据集和评估标准。

分类

LLM上的模型编辑方法主要包括两类:(a) 模型参数不变(Preserving LLMs' Parameters);(b) 模型参数改变(Preserving LLMs' Parameters)。模型参数不变的方法又可以分为额外参数 (Additional Parameters) 和基于记忆的 (Memory-based Model)方法。而模型参数改变的方法又可以分为定位然后编辑类(Locate-Then-Edit)和元学习类(Meta-learning)。

Methods for Preserving LLMs' Parameters

Memory-based Model 该类方法又两类分支,一种是借助一个在新的事实上训练的模型辅助 预测,另一种是借助检索 到的知识作为提示词的一部分信息。
Additional Parameters 该类方法引入额外的可训练参数,这些参数根据新的事实数据集训练,而模型的原始参数不变。

Methods for Modifying LLMs' Parameters

Locate-Then-Edit 该类方法首先定位到特定知识相关的参数,然后直接进行修改(无需额外的训练和微调)。
Meta-learning 该类方法应用一个超网络学习更新模型参数的变量。

相关推荐
AI大模型14 分钟前
小白 & 程序员速看!快速入行大模型应用开发的完整实战指南,建议收藏
程序员·llm·agent
背心2块钱包邮26 分钟前
第7节——积分技巧(Integration Techniques)-代换积分法
人工智能·python·深度学习·matplotlib
无心水31 分钟前
【分布式利器:大厂技术】4、字节跳动高性能架构:Kitex+Hertz+BytePS,实时流与AI的极致优化
人工智能·分布式·架构·kitex·分布式利器·字节跳动分布式·byteps
阿正的梦工坊42 分钟前
DreamGym:通过经验合成实现代理学习的可扩展化
人工智能·算法·大模型·llm
湘-枫叶情缘1 小时前
人脑生物芯片作为“数字修炼世界”终极载体的技术前景、伦理挑战与实现路径
人工智能
Aaron15881 小时前
侦察、测向、识别、干扰一体化平台系统技术实现
人工智能·fpga开发·硬件架构·边缘计算·信息与通信·射频工程·基带工程
山顶夕景1 小时前
【LLM应用】Codex & Codex CLI使用
大模型·llm·ai编程
维维180-3121-14551 小时前
作物模型的未来:DSSAT与机器学习、遥感及多尺度模拟的融合
人工智能·生态学·农业遥感·作物模型·地理学·农学
墨风如雪2 小时前
谷歌深夜炸场:月费250刀的Deep Think,这次真的学会了“慢思考”
aigc
阿杰学AI2 小时前
AI核心知识38——大语言模型之Alignment(简洁且通俗易懂版)
人工智能·安全·ai·语言模型·aigc·ai对齐·alignment