中间件 | Kafka - [常见问题]

INDEX

      • [§1 为什么快](#§1 为什么快)
      • [§2 消息丢失](#§2 消息丢失)
        • [§2.1 消息丢失位置](#§2.1 消息丢失位置)
        • [§2.2 如何避免消息丢失](#§2.2 如何避免消息丢失)
      • [§3 顺序消费](#§3 顺序消费)

§1 为什么快

  • kafka使用的是基于文件的顺序存储
    • 代价是只能通过offset标记消费情况并
    • 总 partition 数越高,性能越下降,可降低一个数量级
      每个 partition 的消息会保存在一个独立文件中,文件内都是顺序读写,跨文件就变成随机 io 了
  • kafka使用 0 复制技术进行网络传输,速度快,底层依赖sendFile
  • kafka默认开启消息压缩
    消息是在客户端压缩后再传输,服务端只保存,客户端消费时也是先传输后解压然后才能真的消费

§2 消息丢失

§2.1 消息丢失位置
  • 1:producer 向 kafka 投递消息时
  • 2:kafka-topic 中 leader 已经写入了消息,向副本写入消息前挂了时
  • 3:消费者从 kafka 拉取了消息,提交了 offset 但没有真实消费时
§2.2 如何避免消息丢失

发送时:

  • 启动独立消息服务,持久化所有需要发送的消息
    • 不是所有消息都需要持久化,没有可靠性要求的消息可以直接发送
    • 先持久化消息数据,再投递消息,消息收到 ACK 后需要更新消息状态
  • 开启定时任务,轮询持久化的消息,长期没有变更状态的消息需要回查

复制时

  • ACK 机制的选择
    • 可以保持默认的 all 级别
    • 但因为有独立消息服务在,可以置为 1(写入 leader 即返回)
  • 指定合适 ISR
    • ISR 即 In-Sync Replica set,是与 leader 正常通信的 broker 的集合
    • leader 包含在这个集合中
    • 通过 max.insync.replica 可以确定 ACK 返回的时机
      • 必须在 ACK == all/-1 时,此配置才有效
      • 通常配置为 副本数/2
      • 默认值 1,但这样配置 ACK 的 ALL 与 1 等价,都是只写入 leader 就 ACK

消费时:

  • 需要正确的提交 offset
  • offset 可以漏提交,但不能空提交(还没消费就提交了)
  • 消费端必须补全幂等

§3 顺序消费

  • 业务没有要求的情况下不用保证顺序消费
  • 局部顺序消费由 partition 保证,partition 中的消息是有序的,会顺序消费
  • 如果希望全局顺序消费,需要 topic 只有一个 partition
  • 不能保证顺序消费的场景
    • 消息加入到死信队列(重试队列) 中
      已经脱离了原来的顺序
    • 消费端开了并发消费,比如监听到的消息扔到线程池里处理
相关推荐
麦兜*3 分钟前
深入解析分布式数据库TiDB核心架构:基于Raft一致性协议与HTAP混合负载实现金融级高可用与实时分析的工程实践
数据库·分布式·tidb
没有bug.的程序员15 分钟前
Spring Boot 与 Sleuth:分布式链路追踪的集成、原理与线上故障排查实战
java·spring boot·分布式·后端·分布式链路追踪·sleuth·线上故障排查
Jackyzhe30 分钟前
从零学习Kafka:配置参数
分布式·学习·kafka
晓131332 分钟前
第七章:Redis高级最佳实践详解
redis·分布式·缓存
Go高并发架构_王工1 小时前
Kafka Streams:流处理应用开发实战
分布式·kafka·linq
Rysxt_1 小时前
分布式数据库模式结构完整教程
数据库·分布式
Gold Steps.1 小时前
Longhorn分布式云原生块存储系统
分布式·云原生
摇摆的含羞草1 小时前
kafka多种通信方案总结
kafka
想你依然心痛2 小时前
Spark大数据分析与实战笔记(第六章 Kafka分布式发布订阅消息系统-03)
笔记·分布式·spark·kafka
鸽鸽程序猿2 小时前
【JavaEE】【SpringCloud】分布式事务 Alibaba Seata
分布式·spring cloud·java-ee