Elasticsearch快速检索的法宝: 倒排索引

倒排索引(Inverted Index)是搜索引擎和信息检索系统中的一个关键数据结构,它允许快速进行全文搜索。在倒排索引中,文档的内容被分析并分割成一系列的词条(tokens),然后每个词条被映射到包含它的所有文档列表。

倒排索引的结构

倒排索引通常由两个主要的组件构成:

  1. 词条词典(Term Dictionary):一个包含所有独特词条的集合,通常每个词条都有一个唯一的标识符(如ID)。
  2. 倒排列表(Inverted List) :对于词典中的每个词条,都有一个倒排列表,其中包含了所有包含该词条的文档的标识符列表。
    例如,假设我们有以下文档集合:
  • 文档1:我来到北京清华大学

  • 文档2:来到北京不容易

  • 文档3:清华大学是一个好学校
    将这些文档分析并构建倒排索引后,我们可能会得到以下结构:

    词条词典:
    {
    '我': [1],
    '来到': [1, 2],
    '北京': [1, 2],
    '清华大学': [1, 3],
    '一个': [3],
    '好': [3],
    '学校': [3]
    }
    倒排列表:
    {
    1: ['来到', '北京', '清华大学'],
    2: ['来到', '北京'],
    3: ['清华大学', '一个', '好', '学校']
    }

搜索过程

当用户提交一个查询时,搜索系统会解析查询并查找倒排索引中的相关词条。然后,它会收集所有包含这些词条的文档标识符,并按照某种排序策略(如文档得分)返回最相关的文档。

优点

  • 高效检索:倒排索引允许快速的全文搜索,因为只需要遍历倒排列表即可找到包含特定词条的文档。
  • 灵活的查询:支持各种复杂的查询操作,如布尔查询、短语查询、范围查询等。
  • 易于扩展:新文档的添加和旧文档的更新只需要对倒排索引进行简单的修改。

缺点

  • 空间复杂度:倒排索引通常需要大量的存储空间,特别是对于大规模的文档集合。
  • 更新代价 :当文档集合发生变化时(如文档添加或删除),倒排索引需要进行相应的更新,这可能是一个代价较高的操作。
    在实际应用中,倒排索引是搜索引擎的核心组成部分,它使得快速、高效的信息检索成为可能。许多流行的搜索引擎系统,如Elasticsearch和Solr,都内置了倒排索引的支持。
相关推荐
老蒋新思维42 分钟前
创客匠人启示:破解知识交付的“认知摩擦”——IP、AI与数据的三角解耦模型
大数据·人工智能·网络协议·tcp/ip·重构·创客匠人·知识变现
爱埋珊瑚海~~1 小时前
基于MediaCrawler爬取热点视频
大数据·python
工程师丶佛爷1 小时前
从零到一MCP集成:让模型实现从“想法”到“实践”的跃迁
大数据·人工智能·python
2021_fc1 小时前
Flink笔记
大数据·笔记·flink
Light602 小时前
数据要素与数据知识产权交易中心建设专项方案——以领码 SPARK 融合平台为技术底座,构建可评估、可验证、可交易、可监管的数据要素工程体系
大数据·分布式·spark
zyxzyx492 小时前
AI 实战:从零搭建轻量型文本分类系统
大数据·人工智能·分类
五阿哥永琪3 小时前
SQL中的函数--开窗函数
大数据·数据库·sql
程序员小羊!3 小时前
数仓数据基线,在不借助平台下要怎么做?
大数据·数据仓库
火山引擎开发者社区4 小时前
两大模型发布!豆包大模型日均使用量突破 50 万亿 Tokens
大数据·人工智能
GEO-optimize5 小时前
2025年末GEO服务商推荐甄选:综合实力测评及优选指南
人工智能·搜索引擎·geo