Elasticsearch快速检索的法宝: 倒排索引

倒排索引(Inverted Index)是搜索引擎和信息检索系统中的一个关键数据结构,它允许快速进行全文搜索。在倒排索引中,文档的内容被分析并分割成一系列的词条(tokens),然后每个词条被映射到包含它的所有文档列表。

倒排索引的结构

倒排索引通常由两个主要的组件构成:

  1. 词条词典(Term Dictionary):一个包含所有独特词条的集合,通常每个词条都有一个唯一的标识符(如ID)。
  2. 倒排列表(Inverted List) :对于词典中的每个词条,都有一个倒排列表,其中包含了所有包含该词条的文档的标识符列表。
    例如,假设我们有以下文档集合:
  • 文档1:我来到北京清华大学

  • 文档2:来到北京不容易

  • 文档3:清华大学是一个好学校
    将这些文档分析并构建倒排索引后,我们可能会得到以下结构:

    词条词典:
    {
    '我': [1],
    '来到': [1, 2],
    '北京': [1, 2],
    '清华大学': [1, 3],
    '一个': [3],
    '好': [3],
    '学校': [3]
    }
    倒排列表:
    {
    1: ['来到', '北京', '清华大学'],
    2: ['来到', '北京'],
    3: ['清华大学', '一个', '好', '学校']
    }

搜索过程

当用户提交一个查询时,搜索系统会解析查询并查找倒排索引中的相关词条。然后,它会收集所有包含这些词条的文档标识符,并按照某种排序策略(如文档得分)返回最相关的文档。

优点

  • 高效检索:倒排索引允许快速的全文搜索,因为只需要遍历倒排列表即可找到包含特定词条的文档。
  • 灵活的查询:支持各种复杂的查询操作,如布尔查询、短语查询、范围查询等。
  • 易于扩展:新文档的添加和旧文档的更新只需要对倒排索引进行简单的修改。

缺点

  • 空间复杂度:倒排索引通常需要大量的存储空间,特别是对于大规模的文档集合。
  • 更新代价 :当文档集合发生变化时(如文档添加或删除),倒排索引需要进行相应的更新,这可能是一个代价较高的操作。
    在实际应用中,倒排索引是搜索引擎的核心组成部分,它使得快速、高效的信息检索成为可能。许多流行的搜索引擎系统,如Elasticsearch和Solr,都内置了倒排索引的支持。
相关推荐
老蒋新思维1 分钟前
创客匠人峰会实录:创始人 IP 变现的 “人 + 智能体” 协同范式 —— 打破知识变现的能力边界
大数据·网络·人工智能·网络协议·tcp/ip·创始人ip·创客匠人
jkyy20141 小时前
端到端生态闭环:智能硬件+云平台+应用终端,最大化穿戴设备价值
大数据·人工智能·物联网·健康医疗
路边草随风1 小时前
java实现发布flink yarn application模式作业
java·大数据·flink·yarn
qyresearch_2 小时前
全球流体动力螺杆泵市场竞争格局、厂商战略与中国制造出海机遇(2026年)
大数据
TDengine (老段)2 小时前
TDengine IDMP 产品路线图
大数据·数据库·人工智能·ai·时序数据库·tdengine·涛思数据
Jerry.张蒙3 小时前
SAP物料移动与财务集成的逻辑梳理
大数据·ai·信息可视化·自动化·运维开发·创业创新
expect7g3 小时前
Paimon源码解读 -- Compaction-3.MergeSorter
大数据·后端·flink
老蒋新思维3 小时前
创客匠人深度洞察:创始人 IP 打造的非线性增长模型 —— 知识变现的下一个十年红利
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
hans汉斯4 小时前
【人工智能与机器人研究】人工智能算法伦理风险的适应性治理研究——基于浙江实践与欧美经验的整合框架
大数据·人工智能·算法·机器人·数据安全·算法伦理·制度保障
秋刀鱼 ..4 小时前
【IEEE出版】第五届高性能计算、大数据与通信工程国际学术会议(ICHBC 2025)
大数据·人工智能·python·机器人·制造·新人首发