Elasticsearch快速检索的法宝: 倒排索引

倒排索引(Inverted Index)是搜索引擎和信息检索系统中的一个关键数据结构,它允许快速进行全文搜索。在倒排索引中,文档的内容被分析并分割成一系列的词条(tokens),然后每个词条被映射到包含它的所有文档列表。

倒排索引的结构

倒排索引通常由两个主要的组件构成:

  1. 词条词典(Term Dictionary):一个包含所有独特词条的集合,通常每个词条都有一个唯一的标识符(如ID)。
  2. 倒排列表(Inverted List) :对于词典中的每个词条,都有一个倒排列表,其中包含了所有包含该词条的文档的标识符列表。
    例如,假设我们有以下文档集合:
  • 文档1:我来到北京清华大学

  • 文档2:来到北京不容易

  • 文档3:清华大学是一个好学校
    将这些文档分析并构建倒排索引后,我们可能会得到以下结构:

    词条词典:
    {
    '我': [1],
    '来到': [1, 2],
    '北京': [1, 2],
    '清华大学': [1, 3],
    '一个': [3],
    '好': [3],
    '学校': [3]
    }
    倒排列表:
    {
    1: ['来到', '北京', '清华大学'],
    2: ['来到', '北京'],
    3: ['清华大学', '一个', '好', '学校']
    }

搜索过程

当用户提交一个查询时,搜索系统会解析查询并查找倒排索引中的相关词条。然后,它会收集所有包含这些词条的文档标识符,并按照某种排序策略(如文档得分)返回最相关的文档。

优点

  • 高效检索:倒排索引允许快速的全文搜索,因为只需要遍历倒排列表即可找到包含特定词条的文档。
  • 灵活的查询:支持各种复杂的查询操作,如布尔查询、短语查询、范围查询等。
  • 易于扩展:新文档的添加和旧文档的更新只需要对倒排索引进行简单的修改。

缺点

  • 空间复杂度:倒排索引通常需要大量的存储空间,特别是对于大规模的文档集合。
  • 更新代价 :当文档集合发生变化时(如文档添加或删除),倒排索引需要进行相应的更新,这可能是一个代价较高的操作。
    在实际应用中,倒排索引是搜索引擎的核心组成部分,它使得快速、高效的信息检索成为可能。许多流行的搜索引擎系统,如Elasticsearch和Solr,都内置了倒排索引的支持。
相关推荐
Flink_China几秒前
抖音集团电商流量实时数仓建设实践
大数据·flink
二爷记几秒前
QXQ3真i9级CPU是捡漏还是踩坑!i9-12900 ES版CPU值得入手吗?
大数据·elasticsearch·搜索引擎·全文检索
qyresearch_1 小时前
全球碳化硅晶片市场深度解析:技术迭代、产业重构与未来赛道争夺战(2025-2031)
大数据·人工智能
何双新1 小时前
L3-3、从单轮到链式任务:设计协作型 Prompt 系统
服务器·搜索引擎·prompt
Hello.Reader1 小时前
在 Ubuntu 环境为 Elasticsearch 引入 `icu_tokenizer
ubuntu·elasticsearch·jenkins
猫猫头有亿点炸2 小时前
大数据可能出现的bug之flume
大数据·bug·flume
小奕同学A2 小时前
数字化技术的五个环节:大数据、云计算、人工智能、区块链、移动互联网
大数据·人工智能·云计算
计算机毕设定制辅导-无忧学长7 小时前
TDengine 集群高可用方案设计(一)
大数据·时序数据库·tdengine
jack_xu10 小时前
高频面试题:如何保证数据库和es数据一致性
后端·mysql·elasticsearch