Elasticsearch快速检索的法宝: 倒排索引

倒排索引(Inverted Index)是搜索引擎和信息检索系统中的一个关键数据结构,它允许快速进行全文搜索。在倒排索引中,文档的内容被分析并分割成一系列的词条(tokens),然后每个词条被映射到包含它的所有文档列表。

倒排索引的结构

倒排索引通常由两个主要的组件构成:

  1. 词条词典(Term Dictionary):一个包含所有独特词条的集合,通常每个词条都有一个唯一的标识符(如ID)。
  2. 倒排列表(Inverted List) :对于词典中的每个词条,都有一个倒排列表,其中包含了所有包含该词条的文档的标识符列表。
    例如,假设我们有以下文档集合:
  • 文档1:我来到北京清华大学

  • 文档2:来到北京不容易

  • 文档3:清华大学是一个好学校
    将这些文档分析并构建倒排索引后,我们可能会得到以下结构:

    词条词典:
    {
    '我': [1],
    '来到': [1, 2],
    '北京': [1, 2],
    '清华大学': [1, 3],
    '一个': [3],
    '好': [3],
    '学校': [3]
    }
    倒排列表:
    {
    1: ['来到', '北京', '清华大学'],
    2: ['来到', '北京'],
    3: ['清华大学', '一个', '好', '学校']
    }

搜索过程

当用户提交一个查询时,搜索系统会解析查询并查找倒排索引中的相关词条。然后,它会收集所有包含这些词条的文档标识符,并按照某种排序策略(如文档得分)返回最相关的文档。

优点

  • 高效检索:倒排索引允许快速的全文搜索,因为只需要遍历倒排列表即可找到包含特定词条的文档。
  • 灵活的查询:支持各种复杂的查询操作,如布尔查询、短语查询、范围查询等。
  • 易于扩展:新文档的添加和旧文档的更新只需要对倒排索引进行简单的修改。

缺点

  • 空间复杂度:倒排索引通常需要大量的存储空间,特别是对于大规模的文档集合。
  • 更新代价 :当文档集合发生变化时(如文档添加或删除),倒排索引需要进行相应的更新,这可能是一个代价较高的操作。
    在实际应用中,倒排索引是搜索引擎的核心组成部分,它使得快速、高效的信息检索成为可能。许多流行的搜索引擎系统,如Elasticsearch和Solr,都内置了倒排索引的支持。
相关推荐
MZWeiei21 分钟前
Spark SQL 运行架构详解(专业解释+番茄炒蛋例子解读)
大数据·分布式·sql·架构·spark
Hadoop_Liang1 小时前
解决Mawell1.29.2启动SQLException: You have an error in your SQL syntax问题
大数据·数据库·maxwell
火龙谷2 小时前
【hadoop】Flume的相关介绍
大数据·hadoop·flume
Luck_ff08104 小时前
Elasticsearch 快速入门指南
大数据·elasticsearch·搜索引擎
天天爱吃肉82184 小时前
大数据:新能源汽车宇宙的未来曲率引擎
大数据·汽车
言之。5 小时前
Makefile 在 Go 项目中的实践
开发语言·elasticsearch·golang
IvanCodes6 小时前
九、HQL DQL七大查询子句
大数据·数据库·hive
只因只因爆6 小时前
spark数据清洗
大数据·分布式·spark
好吃的肘子8 小时前
ElasticSearch进阶
大数据·开发语言·分布式·算法·elasticsearch·kafka·jenkins
老友@8 小时前
Spring Data Elasticsearch 中 ElasticsearchOperations 构建查询条件的详解
java·后端·spring·elasticsearch·operations