How NeRFs and 3D Gaussian Splatting areReshaping SLAM: a Survey

Abstract---Over the past two decades, research in the field of Simultaneous Localization and Mapping (SLAM) has undergone a

significant evolution, highlighting its critical role in enabling autonomous exploration of unknown environments. This evolution ranges

from hand-crafted methods, through the era of deep learning, to more recent developments focused on Neural Radiance Fields

(NeRFs) and 3D Gaussian Splatting (3DGS) representations. Recognizing the growing body of research and the absence of a

comprehensive survey on the topic, this paper aims to provide the first comprehensive overview of SLAM progress through the lens of

the latest advancements in radiance fields. It sheds light on the background, evolutionary path, inherent strengths and limitations, and

serves as a fundamental reference to highlight the dynamic progress and specific challenges


TABLE 1: SLAM Systems Overview. We categorize the different methods into main RGB-D, RGB, and LiDAR-based
frameworks. In the leftmost column, we identify sub-categories of methods sharing specific properties, detailed in Sections
3.2.1 to 3.3.2 . Then, for each method, we report, from the second leftmost column to the second rightmost, the method name
and publication venue, followed by (a) the input modalities they can process: RGB, RGB-D, D ( e.g. LiDAR, ToF, Kinect,
etc.), stereo, IMU, or events; (b) mapping properties: scene encoding and geometry representations learned by the model;
(c) additional outputs learned by the method, such as object/semantic segmentation, or uncertainty modeling (Uncert.);
(d) tracking properties related to the adoption of a frame-to-frame or frame-to-model approach, the utilization of external
trackers, Global Bundle Adjustment (BA), or Loop Closure; (e) advanced design strategies, such as modeling sub-maps or
dealing with dynamic environments (Dyn. Env.); (f) the use of additional priors. Finally, we report the link to the project
page or source code in the rightmost column. indicates code not released yet

相关推荐
Clarence Liu1 天前
用大白话讲解人工智能(4) Softmax回归:AI如何给选项“打分排序“
人工智能·数据挖掘·回归
教男朋友学大模型1 天前
Agent效果该怎么评估?
大数据·人工智能·经验分享·面试·求职招聘
hit56实验室1 天前
AI4Science开源汇总
人工智能
CeshirenTester1 天前
9B 上端侧:多模态实时对话,难点其实在“流”
开发语言·人工智能·python·prompt·测试用例
relis1 天前
Tiny-GPU 仿真与静态分析完整指南:Pyslang + Cocotb 实战
人工智能
njsgcs1 天前
agentscope怎么在对话的时候调用记忆的
人工智能
泯泷1 天前
提示工程的悖论:为什么与 AI 对话比你想象的更难
人工智能·后端·openai
逻极1 天前
BMAD之落地实施:像CTO一样指挥AI编码 (Phase 4_ Implementation)——必学!BMAD 方法论架构从入门到精通
人工智能·ai·系统架构·ai编程·ai辅助编程·bmad·ai驱动敏捷开发
冰西瓜6001 天前
深度学习的数学原理(七)—— 优化器:从SGD到Adam
人工智能·深度学习
模型时代1 天前
Claude AI 发现 500 个高危软件漏洞
人工智能