How NeRFs and 3D Gaussian Splatting areReshaping SLAM: a Survey

Abstract---Over the past two decades, research in the field of Simultaneous Localization and Mapping (SLAM) has undergone a

significant evolution, highlighting its critical role in enabling autonomous exploration of unknown environments. This evolution ranges

from hand-crafted methods, through the era of deep learning, to more recent developments focused on Neural Radiance Fields

(NeRFs) and 3D Gaussian Splatting (3DGS) representations. Recognizing the growing body of research and the absence of a

comprehensive survey on the topic, this paper aims to provide the first comprehensive overview of SLAM progress through the lens of

the latest advancements in radiance fields. It sheds light on the background, evolutionary path, inherent strengths and limitations, and

serves as a fundamental reference to highlight the dynamic progress and specific challenges


TABLE 1: SLAM Systems Overview. We categorize the different methods into main RGB-D, RGB, and LiDAR-based
frameworks. In the leftmost column, we identify sub-categories of methods sharing specific properties, detailed in Sections
3.2.1 to 3.3.2 . Then, for each method, we report, from the second leftmost column to the second rightmost, the method name
and publication venue, followed by (a) the input modalities they can process: RGB, RGB-D, D ( e.g. LiDAR, ToF, Kinect,
etc.), stereo, IMU, or events; (b) mapping properties: scene encoding and geometry representations learned by the model;
(c) additional outputs learned by the method, such as object/semantic segmentation, or uncertainty modeling (Uncert.);
(d) tracking properties related to the adoption of a frame-to-frame or frame-to-model approach, the utilization of external
trackers, Global Bundle Adjustment (BA), or Loop Closure; (e) advanced design strategies, such as modeling sub-maps or
dealing with dynamic environments (Dyn. Env.); (f) the use of additional priors. Finally, we report the link to the project
page or source code in the rightmost column. indicates code not released yet

相关推荐
Java中文社群几秒前
崩溃了!N8N升级后插件全变红?教你2招完美解决!
人工智能
wshzd1 分钟前
LLM之Agent(三十九)|AI Agents(八):构建Multi-Agent系统
人工智能·microsoft
爱加糖的橙子1 分钟前
升级到dify1.10.1-fix版本后,还是有漏洞,React和Next.js的版本和官网描述不一样
前端·人工智能·react.js·阿里云
IT·小灰灰4 分钟前
Doubao-Seedream-4.5:当AI学会“版式设计思维“——设计师的七种新武器
javascript·网络·人工智能·python·深度学习·生成对抗网络·云计算
中杯可乐多加冰9 分钟前
【解决方案】PASCAL VOC 、YOLO txt、COCO目标检测三大格式简述与PASCAL VOC COCO格式互转
深度学习·yolo·目标检测·计算机视觉·目标跟踪·视觉检测·coco
阿杰学AI10 分钟前
AI核心知识42——大语言模型之AI Coding(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·ai编程·cursor·ai coding
工藤学编程11 分钟前
零基础学AI大模型之LangChain整合Milvus:新增与删除数据实战
人工智能·langchain·milvus
希艾席帝恩12 分钟前
从制造到“智造”:数字孪生驱动的工业革命
大数据·人工智能·数字孪生·数据可视化·数字化转型
方品12 分钟前
从0构建深度学习框架——揭秘深度学习框架的黑箱
人工智能·深度学习
光羽隹衡20 分钟前
机器学习的介绍
人工智能·机器学习