How NeRFs and 3D Gaussian Splatting areReshaping SLAM: a Survey

Abstract---Over the past two decades, research in the field of Simultaneous Localization and Mapping (SLAM) has undergone a

significant evolution, highlighting its critical role in enabling autonomous exploration of unknown environments. This evolution ranges

from hand-crafted methods, through the era of deep learning, to more recent developments focused on Neural Radiance Fields

(NeRFs) and 3D Gaussian Splatting (3DGS) representations. Recognizing the growing body of research and the absence of a

comprehensive survey on the topic, this paper aims to provide the first comprehensive overview of SLAM progress through the lens of

the latest advancements in radiance fields. It sheds light on the background, evolutionary path, inherent strengths and limitations, and

serves as a fundamental reference to highlight the dynamic progress and specific challenges


TABLE 1: SLAM Systems Overview. We categorize the different methods into main RGB-D, RGB, and LiDAR-based
frameworks. In the leftmost column, we identify sub-categories of methods sharing specific properties, detailed in Sections
3.2.1 to 3.3.2 . Then, for each method, we report, from the second leftmost column to the second rightmost, the method name
and publication venue, followed by (a) the input modalities they can process: RGB, RGB-D, D ( e.g. LiDAR, ToF, Kinect,
etc.), stereo, IMU, or events; (b) mapping properties: scene encoding and geometry representations learned by the model;
(c) additional outputs learned by the method, such as object/semantic segmentation, or uncertainty modeling (Uncert.);
(d) tracking properties related to the adoption of a frame-to-frame or frame-to-model approach, the utilization of external
trackers, Global Bundle Adjustment (BA), or Loop Closure; (e) advanced design strategies, such as modeling sub-maps or
dealing with dynamic environments (Dyn. Env.); (f) the use of additional priors. Finally, we report the link to the project
page or source code in the rightmost column. indicates code not released yet

相关推荐
良策金宝AI2 小时前
让端子排接线图“智能生成”,良策金宝AI推出变电站二次智能设计引擎
大数据·人工智能·工程设计·变电站ai
天云数据2 小时前
神经网络,人类表达的革命
人工智能·深度学习·神经网络·机器学习
xixixi777772 小时前
2026 年 02 月 13 日 AI 前沿、通信和安全行业日报
人工智能·安全·ai·大模型·通信·市场
独自归家的兔3 小时前
深度学习之 CNN:如何在图像数据的海洋中精准 “捕捞” 特征?
人工智能·深度学习·cnn
X54先生(人文科技)3 小时前
20260211_AdviceForTraditionalProgrammers
数据库·人工智能·ai编程
梦想画家3 小时前
数据治理5大核心概念:分清、用好,支撑AI智能化应用
人工智能·数据治理
yhdata3 小时前
锁定2032年!区熔硅单晶市场规模有望达71.51亿元,赛道前景持续向好
大数据·人工智能
deephub4 小时前
RAG 文本分块:七种主流策略的原理与适用场景
人工智能·深度学习·大语言模型·rag·检索
newBorn_19914 小时前
ops-transformer RoPE位置编码 复数旋转硬件加速实战
人工智能·深度学习·transformer·cann