How NeRFs and 3D Gaussian Splatting areReshaping SLAM: a Survey

Abstract---Over the past two decades, research in the field of Simultaneous Localization and Mapping (SLAM) has undergone a

significant evolution, highlighting its critical role in enabling autonomous exploration of unknown environments. This evolution ranges

from hand-crafted methods, through the era of deep learning, to more recent developments focused on Neural Radiance Fields

(NeRFs) and 3D Gaussian Splatting (3DGS) representations. Recognizing the growing body of research and the absence of a

comprehensive survey on the topic, this paper aims to provide the first comprehensive overview of SLAM progress through the lens of

the latest advancements in radiance fields. It sheds light on the background, evolutionary path, inherent strengths and limitations, and

serves as a fundamental reference to highlight the dynamic progress and specific challenges


TABLE 1: SLAM Systems Overview. We categorize the different methods into main RGB-D, RGB, and LiDAR-based
frameworks. In the leftmost column, we identify sub-categories of methods sharing specific properties, detailed in Sections
3.2.1 to 3.3.2 . Then, for each method, we report, from the second leftmost column to the second rightmost, the method name
and publication venue, followed by (a) the input modalities they can process: RGB, RGB-D, D ( e.g. LiDAR, ToF, Kinect,
etc.), stereo, IMU, or events; (b) mapping properties: scene encoding and geometry representations learned by the model;
(c) additional outputs learned by the method, such as object/semantic segmentation, or uncertainty modeling (Uncert.);
(d) tracking properties related to the adoption of a frame-to-frame or frame-to-model approach, the utilization of external
trackers, Global Bundle Adjustment (BA), or Loop Closure; (e) advanced design strategies, such as modeling sub-maps or
dealing with dynamic environments (Dyn. Env.); (f) the use of additional priors. Finally, we report the link to the project
page or source code in the rightmost column. indicates code not released yet

相关推荐
KAI智习1 分钟前
大模型榜单周报(2025/12/20)
人工智能·大模型
2501_9071368216 分钟前
AI 小说生成器-基于 Tauri 2.0 + Vue 3 + TypeScript 的智能小说创作工具
人工智能·软件需求
love530love22 分钟前
ComfyUI 升级 v0.4.0 踩坑记录:解决 TypeError: QM_Queue.task_done() 报错
人工智能·windows·python·comfyui
金士镧(厦门)新材料有限公司25 分钟前
稀土化合物:推动科技发展的“隐形力量”
人工智能·科技·安全·全文检索·生活·能源
牛客企业服务28 分钟前
AI简历筛选:破解海量简历处理难题
人工智能
粟悟饭&龟波功34 分钟前
【GitHub热门项目精选】(2025-12-19)
前端·人工智能·后端·github
诸葛务农35 分钟前
类脑智能技术前沿进展及中美类脑智能技术比对
人工智能
LiYingL37 分钟前
ChartCap:利用大型数据集和新的评估指标抑制图表标题幻觉
人工智能
有来有去952740 分钟前
vllm推理服务指标监控看板搭建手册
人工智能·vllm
流浪法师121 小时前
MyPhishing-Web:AI 驱动的钓鱼邮件检测可视化平台
前端·人工智能