How NeRFs and 3D Gaussian Splatting areReshaping SLAM: a Survey

Abstract---Over the past two decades, research in the field of Simultaneous Localization and Mapping (SLAM) has undergone a

significant evolution, highlighting its critical role in enabling autonomous exploration of unknown environments. This evolution ranges

from hand-crafted methods, through the era of deep learning, to more recent developments focused on Neural Radiance Fields

(NeRFs) and 3D Gaussian Splatting (3DGS) representations. Recognizing the growing body of research and the absence of a

comprehensive survey on the topic, this paper aims to provide the first comprehensive overview of SLAM progress through the lens of

the latest advancements in radiance fields. It sheds light on the background, evolutionary path, inherent strengths and limitations, and

serves as a fundamental reference to highlight the dynamic progress and specific challenges


TABLE 1: SLAM Systems Overview. We categorize the different methods into main RGB-D, RGB, and LiDAR-based
frameworks. In the leftmost column, we identify sub-categories of methods sharing specific properties, detailed in Sections
3.2.1 to 3.3.2 . Then, for each method, we report, from the second leftmost column to the second rightmost, the method name
and publication venue, followed by (a) the input modalities they can process: RGB, RGB-D, D ( e.g. LiDAR, ToF, Kinect,
etc.), stereo, IMU, or events; (b) mapping properties: scene encoding and geometry representations learned by the model;
(c) additional outputs learned by the method, such as object/semantic segmentation, or uncertainty modeling (Uncert.);
(d) tracking properties related to the adoption of a frame-to-frame or frame-to-model approach, the utilization of external
trackers, Global Bundle Adjustment (BA), or Loop Closure; (e) advanced design strategies, such as modeling sub-maps or
dealing with dynamic environments (Dyn. Env.); (f) the use of additional priors. Finally, we report the link to the project
page or source code in the rightmost column. indicates code not released yet

相关推荐
nvd1113 分钟前
FastMCP 开发指南: 5分钟入门
人工智能·python
wp123_131 分钟前
反激应用1:1贴片耦合电感选择:Coilcraft LPD3015-473MR vs 国产兼容 TONEVEE CDD3015-473M
人工智能·制造
不错就是对31 分钟前
【agent-lightning】 - 2_使用 Agent-lightning 训练第一个智能体
人工智能·深度学习·神经网络·自然语言处理·chatgpt·transformer·vllm
zhengfei61135 分钟前
AI渗透工具—Shannon完全自主的AI渗透测试工具
人工智能·深度学习·web安全·知识图谱·测试覆盖率·安全性测试·威胁分析
愚公搬代码37 分钟前
【愚公系列】《AI+直播营销》004-重视直播营销,打造直播竞争力(直播活动的基本原理)
人工智能
哥本哈士奇43 分钟前
简单的神经网络计算过程 - 正负判断
人工智能·深度学习·神经网络
自动驾驶小学生1 小时前
Transformer和LLM前沿内容(3):LLM Post-Training
人工智能·深度学习·transformer
imbackneverdie1 小时前
从零到一,如何用AI高效构建国自然申请书初稿?
人工智能·自然语言处理·aigc·科研·ai写作·学术·国家自然科学基金
Mike_detailing1 小时前
Tensors (张量)
人工智能·pytorch·深度学习
三木今天学习了嘛1 小时前
【Archived 2025】
人工智能