How NeRFs and 3D Gaussian Splatting areReshaping SLAM: a Survey

Abstract---Over the past two decades, research in the field of Simultaneous Localization and Mapping (SLAM) has undergone a

significant evolution, highlighting its critical role in enabling autonomous exploration of unknown environments. This evolution ranges

from hand-crafted methods, through the era of deep learning, to more recent developments focused on Neural Radiance Fields

(NeRFs) and 3D Gaussian Splatting (3DGS) representations. Recognizing the growing body of research and the absence of a

comprehensive survey on the topic, this paper aims to provide the first comprehensive overview of SLAM progress through the lens of

the latest advancements in radiance fields. It sheds light on the background, evolutionary path, inherent strengths and limitations, and

serves as a fundamental reference to highlight the dynamic progress and specific challenges


TABLE 1: SLAM Systems Overview. We categorize the different methods into main RGB-D, RGB, and LiDAR-based
frameworks. In the leftmost column, we identify sub-categories of methods sharing specific properties, detailed in Sections
3.2.1 to 3.3.2 . Then, for each method, we report, from the second leftmost column to the second rightmost, the method name
and publication venue, followed by (a) the input modalities they can process: RGB, RGB-D, D ( e.g. LiDAR, ToF, Kinect,
etc.), stereo, IMU, or events; (b) mapping properties: scene encoding and geometry representations learned by the model;
(c) additional outputs learned by the method, such as object/semantic segmentation, or uncertainty modeling (Uncert.);
(d) tracking properties related to the adoption of a frame-to-frame or frame-to-model approach, the utilization of external
trackers, Global Bundle Adjustment (BA), or Loop Closure; (e) advanced design strategies, such as modeling sub-maps or
dealing with dynamic environments (Dyn. Env.); (f) the use of additional priors. Finally, we report the link to the project
page or source code in the rightmost column. indicates code not released yet

相关推荐
Coder_Boy_1 分钟前
基于DDD+Spring Boot 3.2+LangChain4j构建企业级智能客服系统
java·人工智能·spring boot·后端
Salt_07288 分钟前
DAY44 简单 CNN
python·深度学习·神经网络·算法·机器学习·计算机视觉·cnn
持续学习的程序员+110 分钟前
RLinf强化学习框架试用
人工智能
创客匠人老蒋10 分钟前
AI不是工具,而是新商业模式的操作系统:创客引领数智化转型
人工智能·创客匠人·知识变现·创客匠人全球ip+ai高峰论坛·全球创始人ip+ai万人峰会
Yeats_Liao13 分钟前
MindSpore开发之路(十):构建卷积神经网络(CNN):核心层详解
人工智能·神经网络·cnn
Clank的游戏栈18 分钟前
AI游戏开发全自动编程课程体系(Cursor版,支持Unity/Cocos, Laya后续支持)
人工智能·unity·游戏引擎
雍凉明月夜27 分钟前
深度学习网络笔记Ⅱ(常见网络分类1)
人工智能·笔记·深度学习
北岛寒沫28 分钟前
北京大学国家发展研究院 经济学辅修 经济学原理课程笔记(第十三课 垄断竞争)
人工智能·经验分享·笔记
AI营销实验室29 分钟前
AI 工具何高质量的为销售线索打分?
大数据·人工智能
Wang2012201330 分钟前
RNN和LSTM对比
人工智能·算法·架构