How NeRFs and 3D Gaussian Splatting areReshaping SLAM: a Survey

Abstract---Over the past two decades, research in the field of Simultaneous Localization and Mapping (SLAM) has undergone a

significant evolution, highlighting its critical role in enabling autonomous exploration of unknown environments. This evolution ranges

from hand-crafted methods, through the era of deep learning, to more recent developments focused on Neural Radiance Fields

(NeRFs) and 3D Gaussian Splatting (3DGS) representations. Recognizing the growing body of research and the absence of a

comprehensive survey on the topic, this paper aims to provide the first comprehensive overview of SLAM progress through the lens of

the latest advancements in radiance fields. It sheds light on the background, evolutionary path, inherent strengths and limitations, and

serves as a fundamental reference to highlight the dynamic progress and specific challenges


TABLE 1: SLAM Systems Overview. We categorize the different methods into main RGB-D, RGB, and LiDAR-based
frameworks. In the leftmost column, we identify sub-categories of methods sharing specific properties, detailed in Sections
3.2.1 to 3.3.2 . Then, for each method, we report, from the second leftmost column to the second rightmost, the method name
and publication venue, followed by (a) the input modalities they can process: RGB, RGB-D, D ( e.g. LiDAR, ToF, Kinect,
etc.), stereo, IMU, or events; (b) mapping properties: scene encoding and geometry representations learned by the model;
(c) additional outputs learned by the method, such as object/semantic segmentation, or uncertainty modeling (Uncert.);
(d) tracking properties related to the adoption of a frame-to-frame or frame-to-model approach, the utilization of external
trackers, Global Bundle Adjustment (BA), or Loop Closure; (e) advanced design strategies, such as modeling sub-maps or
dealing with dynamic environments (Dyn. Env.); (f) the use of additional priors. Finally, we report the link to the project
page or source code in the rightmost column. indicates code not released yet

相关推荐
FIT2CLOUD飞致云5 分钟前
问答页面支持拖拽和复制粘贴文件,MaxKB企业级AI助手v1.10.6 LTS版本发布
人工智能·开源
起个破名想半天了6 分钟前
计算机视觉cv入门之答题卡自动批阅
人工智能·opencv·计算机视觉
早睡早起吧9 分钟前
目标检测篇---Fast R-CNN
人工智能·目标检测·计算机视觉·cnn
小墙程序员22 分钟前
机器学习入门(二)线性回归
机器学习
爱喝奶茶的企鹅27 分钟前
Ethan独立开发产品日报 | 2025-04-24
人工智能·程序员·开源
鸿蒙布道师28 分钟前
OpenAI为何觊觎Chrome?AI时代浏览器争夺战背后的深层逻辑
前端·人工智能·chrome·深度学习·opencv·自然语言处理·chatgpt
生信宝典32 分钟前
Nature method: 生物研究中的语言模型入门指南
人工智能·语言模型·自然语言处理
飞哥数智坊41 分钟前
从零开始:用“扣子”打造你的专属Word审查智能体
人工智能
虹科数字化与AR1 小时前
安宝特案例 | 物流仓储头部企业应用AR+作业流,规范日常安全点检,保障消防安全
人工智能·ar·ar眼镜·仓储物流·仓储管理
追逐☞1 小时前
机器学习(7)——K均值聚类
机器学习·均值算法·聚类