克服大型语言模型幻觉使用检索增强生成(RAG)

大型语言模型中的幻觉问题及检索增强生成技术

摘要

大型语言模型(LLM)在语言处理和生成方面带来了革命性的变化,但它们并非完美无缺。LLM可能会产生"幻觉",即生成不准确的信息。这种现象被称为LLM幻觉,随着LLM的使用范围扩大,它引起了越来越多的关注。本文将探讨检索增强生成(RAG)技术如何提高LLM的准确性和可靠性,并讨论RAG是否可以有效对抗LLM幻觉问题。

1. LLM幻觉的原因和例子

LLM,包括著名的模型如ChatGPT、ChatGLM和Claude,虽然经过大量文本数据训练,但并非完全免疫于产生事实错误。幻觉发生是因为LLM被训练成基于底层语言规则生成有意义响应,而不考虑其事实准确性。例如,去年有两名律师因引用六个不存在案例而面临可能的制裁,这是由ChatGPT生成的错误信息误导的。

2. RAG工作原理

RAG技术通过整合外部数据源来减少LLM幻觉。与仅依赖预训练知识的传统LLM不同,RAG模型在回答问题或生成文本之前,会动态地从外部数据库中检索相关信息。RAG过程包括检索、增强和生成三个步骤。

3. RAG的优缺点

RAG通过修复生成过程来减少幻觉,使RAG模型能够提供更准确、更新和上下文相关的信息。RAG的优点包括更好的信息搜索、改进的内容和灵活的使用。然而,RAG也面临一些挑战,如需要特定数据、可扩展性和持续更新。

4. RAG的替代方案

除了RAG,还有其他一些有前景的方法可以减少LLM的幻觉,如G-EVAL、SelfCheckGPT、Prompt Engineering、Fine-tuning和LoRA。

结论

RAG及其替代方案的研究突出了提高LLM准确性和可靠性的动态和多方面方法。随着我们不断进步,持续创新技术如RAG对于解决LLM幻觉的固有问题至关重要。

相关推荐
cooldream20091 分钟前
从辩论训练到具身智能——辩核AI具身辩论数字人系统整体设计思路
人工智能·具身数字人
Light607 分钟前
智能融合,赋能未来:业财一体化与RPA的深度交响
人工智能·数字化转型·业财一体化·流程再造·机器人流程自动化·智能财务
kicikng8 分钟前
智能体来了(西南总部):AI Agent 指挥官与 AI 调度官如何重塑企业智能体体系
人工智能·大模型·智能调度·智能体体系·应用层架构
LetsonH9 分钟前
Swap 大小一键调整脚本
人工智能·python
老陈聊架构10 分钟前
『AI工具』AIShort部署实战:一键部署专属AI提示词管理与共享平台
人工智能·开源·提示词·aishort
小龙报12 分钟前
【SOLIDWORKS 练习题】草图专题:2.GAME BOY
人工智能·驱动开发·硬件架构·硬件工程·pcb工艺·材料工程·精益工程
亿坊电商16 分钟前
如何选择合适的AI数字人开发框架?
人工智能
DS随心转APP16 分钟前
怎么导出豆包聊天记录
人工智能·ai·豆包·deepseek·ds随心转
Java后端的Ai之路16 分钟前
【AI应用开发工程师】-RAG知识切片(chunk)策略解读
人工智能·chunk·切片·rag·ai应用开发工程师
x新观点17 分钟前
2026年亚马逊广告AI工具推荐:AI驱动优化成卖家新宠
大数据·人工智能