克服大型语言模型幻觉使用检索增强生成(RAG)

大型语言模型中的幻觉问题及检索增强生成技术

摘要

大型语言模型(LLM)在语言处理和生成方面带来了革命性的变化,但它们并非完美无缺。LLM可能会产生"幻觉",即生成不准确的信息。这种现象被称为LLM幻觉,随着LLM的使用范围扩大,它引起了越来越多的关注。本文将探讨检索增强生成(RAG)技术如何提高LLM的准确性和可靠性,并讨论RAG是否可以有效对抗LLM幻觉问题。

1. LLM幻觉的原因和例子

LLM,包括著名的模型如ChatGPT、ChatGLM和Claude,虽然经过大量文本数据训练,但并非完全免疫于产生事实错误。幻觉发生是因为LLM被训练成基于底层语言规则生成有意义响应,而不考虑其事实准确性。例如,去年有两名律师因引用六个不存在案例而面临可能的制裁,这是由ChatGPT生成的错误信息误导的。

2. RAG工作原理

RAG技术通过整合外部数据源来减少LLM幻觉。与仅依赖预训练知识的传统LLM不同,RAG模型在回答问题或生成文本之前,会动态地从外部数据库中检索相关信息。RAG过程包括检索、增强和生成三个步骤。

3. RAG的优缺点

RAG通过修复生成过程来减少幻觉,使RAG模型能够提供更准确、更新和上下文相关的信息。RAG的优点包括更好的信息搜索、改进的内容和灵活的使用。然而,RAG也面临一些挑战,如需要特定数据、可扩展性和持续更新。

4. RAG的替代方案

除了RAG,还有其他一些有前景的方法可以减少LLM的幻觉,如G-EVAL、SelfCheckGPT、Prompt Engineering、Fine-tuning和LoRA。

结论

RAG及其替代方案的研究突出了提高LLM准确性和可靠性的动态和多方面方法。随着我们不断进步,持续创新技术如RAG对于解决LLM幻觉的固有问题至关重要。

相关推荐
中冕—霍格沃兹软件开发测试2 分钟前
用户体验测试:功能与界面并重
人工智能·科技·开源·appium·bug·ux
雪兽软件4 分钟前
2025 年人工智能实施的成本是多少?
人工智能
测试人社区-千羽14 分钟前
Apple自动化测试基础设施(XCTest/XCUITest)面试深度解析
运维·人工智能·测试工具·面试·职场和发展·自动化·开源软件
幻云201015 分钟前
Python机器学习:从零基础到项目实战
人工智能·学习·机器学习
秋刀鱼 ..15 分钟前
第二届电气、自动化与人工智能国际学术会议(ICEAAI 2026)
大数据·运维·人工智能·机器人·自动化
@小码农21 分钟前
LMCC大模型认证 青少年组 第一轮模拟样题
数据结构·人工智能·算法·蓝桥杯
知秋一叶12322 分钟前
Miloco 添加 RTSP 协议支持(非官方正式版)
人工智能·智能家居
测试人社区—小叶子25 分钟前
移动开发新宠:用Flutter 4.0快速构建跨平台应用
运维·网络·人工智能·测试工具·flutter·自动化
小小工匠31 分钟前
LLM - 从 Prompt 到上下文工程:面向 Java 的生产级 AI Agent 设计范式
人工智能·prompt·agent·上下文工程
秋刀鱼 ..37 分钟前
2026年光学、物理学与电子信息国际学术会议(OPEI 2026)
运维·人工智能·科技·金融·机器人