克服大型语言模型幻觉使用检索增强生成(RAG)

大型语言模型中的幻觉问题及检索增强生成技术

摘要

大型语言模型(LLM)在语言处理和生成方面带来了革命性的变化,但它们并非完美无缺。LLM可能会产生"幻觉",即生成不准确的信息。这种现象被称为LLM幻觉,随着LLM的使用范围扩大,它引起了越来越多的关注。本文将探讨检索增强生成(RAG)技术如何提高LLM的准确性和可靠性,并讨论RAG是否可以有效对抗LLM幻觉问题。

1. LLM幻觉的原因和例子

LLM,包括著名的模型如ChatGPT、ChatGLM和Claude,虽然经过大量文本数据训练,但并非完全免疫于产生事实错误。幻觉发生是因为LLM被训练成基于底层语言规则生成有意义响应,而不考虑其事实准确性。例如,去年有两名律师因引用六个不存在案例而面临可能的制裁,这是由ChatGPT生成的错误信息误导的。

2. RAG工作原理

RAG技术通过整合外部数据源来减少LLM幻觉。与仅依赖预训练知识的传统LLM不同,RAG模型在回答问题或生成文本之前,会动态地从外部数据库中检索相关信息。RAG过程包括检索、增强和生成三个步骤。

3. RAG的优缺点

RAG通过修复生成过程来减少幻觉,使RAG模型能够提供更准确、更新和上下文相关的信息。RAG的优点包括更好的信息搜索、改进的内容和灵活的使用。然而,RAG也面临一些挑战,如需要特定数据、可扩展性和持续更新。

4. RAG的替代方案

除了RAG,还有其他一些有前景的方法可以减少LLM的幻觉,如G-EVAL、SelfCheckGPT、Prompt Engineering、Fine-tuning和LoRA。

结论

RAG及其替代方案的研究突出了提高LLM准确性和可靠性的动态和多方面方法。随着我们不断进步,持续创新技术如RAG对于解决LLM幻觉的固有问题至关重要。

相关推荐
HAREWORK_FFF8 分钟前
近几年,非技术岗转向AI岗位的现实可能性
人工智能
weixin_6689 分钟前
深度分析:多模态、全模态、VLM、ASR、TTS、STT、OCR- AI分析分享
人工智能
LeonDL1689 分钟前
基于YOLO11深度学习的衣物识别系统【Python源码+Pyqt5界面+数据集+安装使用教程+训练代码】【附下载链接】
人工智能·python·pyqt5·yolo数据集·yolo11数据集·yolo11深度学习·衣物识别系统
犀思云14 分钟前
企业总部网络全球化扩张:利用FusionWAN NaaS 破解“网络成本瓶颈”
网络·人工智能·机器人·智能仓储·专线
Data_Journal19 分钟前
如何使用 Python 解析 JSON 数据
大数据·开发语言·前端·数据库·人工智能·php
陈天伟教授19 分钟前
人工智能应用- 语言理解:09.大语言模型
人工智能·语言模型·自然语言处理
ASS-ASH21 分钟前
AI时代之向量数据库概览
数据库·人工智能·python·llm·embedding·向量数据库·vlm
老百姓懂点AI24 分钟前
[微服务] Istio流量治理:智能体来了(西南总部)AI调度官的熔断策略与AI agent指挥官的混沌工程
人工智能·微服务·istio
芝士爱知识a36 分钟前
2026年教资备考数字化生存指南:主流App深度测评与AI技术应用分析
人工智能·教资·ai教育·教育技术·教资面试·app测评·2026教资
AIArchivist36 分钟前
攻坚肝胆疑难病例,AI成为诊疗决策的“智慧大脑”
人工智能