克服大型语言模型幻觉使用检索增强生成(RAG)

大型语言模型中的幻觉问题及检索增强生成技术

摘要

大型语言模型(LLM)在语言处理和生成方面带来了革命性的变化,但它们并非完美无缺。LLM可能会产生"幻觉",即生成不准确的信息。这种现象被称为LLM幻觉,随着LLM的使用范围扩大,它引起了越来越多的关注。本文将探讨检索增强生成(RAG)技术如何提高LLM的准确性和可靠性,并讨论RAG是否可以有效对抗LLM幻觉问题。

1. LLM幻觉的原因和例子

LLM,包括著名的模型如ChatGPT、ChatGLM和Claude,虽然经过大量文本数据训练,但并非完全免疫于产生事实错误。幻觉发生是因为LLM被训练成基于底层语言规则生成有意义响应,而不考虑其事实准确性。例如,去年有两名律师因引用六个不存在案例而面临可能的制裁,这是由ChatGPT生成的错误信息误导的。

2. RAG工作原理

RAG技术通过整合外部数据源来减少LLM幻觉。与仅依赖预训练知识的传统LLM不同,RAG模型在回答问题或生成文本之前,会动态地从外部数据库中检索相关信息。RAG过程包括检索、增强和生成三个步骤。

3. RAG的优缺点

RAG通过修复生成过程来减少幻觉,使RAG模型能够提供更准确、更新和上下文相关的信息。RAG的优点包括更好的信息搜索、改进的内容和灵活的使用。然而,RAG也面临一些挑战,如需要特定数据、可扩展性和持续更新。

4. RAG的替代方案

除了RAG,还有其他一些有前景的方法可以减少LLM的幻觉,如G-EVAL、SelfCheckGPT、Prompt Engineering、Fine-tuning和LoRA。

结论

RAG及其替代方案的研究突出了提高LLM准确性和可靠性的动态和多方面方法。随着我们不断进步,持续创新技术如RAG对于解决LLM幻觉的固有问题至关重要。

相关推荐
藦卡机器人1 分钟前
国产激光焊接机器人品牌
大数据·人工智能·机器人
Mixtral4 分钟前
4款语音转写工具测评:告别手动记录,提升工作效率
人工智能·ai
向量引擎小橙7 分钟前
从“对话助手”到“数字架构师”:Claude 4.6 Opus 如何凭一己之力,终结全球程序员的“CRUD 焦虑”?
人工智能·python·gpt·深度学习
njsgcs10 分钟前
ACuRL用于环境适应的计算机使用代理的自主持续学习 论文阅读
人工智能
小鸡吃米…11 分钟前
TensorFlow - 单层感知机
人工智能·python·tensorflow
流云细水13 分钟前
Spec(规格说明书)与Skill(技能库)实操指南
java·人工智能
山顶夕景14 分钟前
【Math】数学知识点串联
人工智能·数学·算法·机器学习
shenxianasi19 分钟前
【论文精读】Flamingo: a Visual Language Model for Few-Shot Learning
人工智能·深度学习·机器学习·计算机视觉·语言模型·自然语言处理
模型时代20 分钟前
Anthropic承诺保护消费者免受电价上涨影响
人工智能
Coding茶水间23 分钟前
基于深度学习的车牌识别系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·机器学习