克服大型语言模型幻觉使用检索增强生成(RAG)

大型语言模型中的幻觉问题及检索增强生成技术

摘要

大型语言模型(LLM)在语言处理和生成方面带来了革命性的变化,但它们并非完美无缺。LLM可能会产生"幻觉",即生成不准确的信息。这种现象被称为LLM幻觉,随着LLM的使用范围扩大,它引起了越来越多的关注。本文将探讨检索增强生成(RAG)技术如何提高LLM的准确性和可靠性,并讨论RAG是否可以有效对抗LLM幻觉问题。

1. LLM幻觉的原因和例子

LLM,包括著名的模型如ChatGPT、ChatGLM和Claude,虽然经过大量文本数据训练,但并非完全免疫于产生事实错误。幻觉发生是因为LLM被训练成基于底层语言规则生成有意义响应,而不考虑其事实准确性。例如,去年有两名律师因引用六个不存在案例而面临可能的制裁,这是由ChatGPT生成的错误信息误导的。

2. RAG工作原理

RAG技术通过整合外部数据源来减少LLM幻觉。与仅依赖预训练知识的传统LLM不同,RAG模型在回答问题或生成文本之前,会动态地从外部数据库中检索相关信息。RAG过程包括检索、增强和生成三个步骤。

3. RAG的优缺点

RAG通过修复生成过程来减少幻觉,使RAG模型能够提供更准确、更新和上下文相关的信息。RAG的优点包括更好的信息搜索、改进的内容和灵活的使用。然而,RAG也面临一些挑战,如需要特定数据、可扩展性和持续更新。

4. RAG的替代方案

除了RAG,还有其他一些有前景的方法可以减少LLM的幻觉,如G-EVAL、SelfCheckGPT、Prompt Engineering、Fine-tuning和LoRA。

结论

RAG及其替代方案的研究突出了提高LLM准确性和可靠性的动态和多方面方法。随着我们不断进步,持续创新技术如RAG对于解决LLM幻觉的固有问题至关重要。

相关推荐
2401_8288906413 小时前
通用唤醒词识别模型 - Wav2Vec2
人工智能·python·深度学习·audiolm
智慧地球(AI·Earth)13 小时前
GLM-5登场集成稀疏注意力,工程能力更强
人工智能
nita张13 小时前
2026年2月实战案例分享:合肥战略定位成果解析
人工智能·python
高光视点13 小时前
香港领先GEO服务商XOOER 专注GEO/AEO赋能品牌全球扩张
人工智能
实战产品说13 小时前
2026出海产品的机会与挑战
大数据·人工智能·产品运营·产品经理
无心水13 小时前
【任务调度:数据库锁 + 线程池实战】4、架构实战:用线程池 + SKIP LOCKED 构建高可用分布式调度引擎
人工智能·分布式·后端·spring·架构
x-cmd13 小时前
[x-cmd] x ollama - 本地大语言模型运行工具
人工智能·ai·语言模型·自然语言处理·x-cmd
gorgeous(๑>؂<๑)13 小时前
【ICLR26-Oral Paper-字节跳动】推理即表征:重新思考图像质量评估中的视觉强化学习
人工智能·深度学习·神经网络·机器学习·计算机视觉
2501_9269783313 小时前
从Prompt的“结构-参数”到多AI的“协作-分工”--底层逻辑的同构分化
大数据·人工智能·机器学习
狮子座明仔14 小时前
MemFly:当智能体的记忆学会了“断舍离“——信息瓶颈驱动的即时记忆优化
人工智能·深度学习·语言模型·自然语言处理