sparksql简介

什么是sparksql

sparksql是一个用来处理结构话数据的spark模块,它允许开发者便捷地使用sql语句的方式来处理数据;它是用来处理大规模结构化数据的分布式计算引擎,其他分布式计算引擎比较火的还有hive,map-reduce方式。

sparksql的特点

  1. 融合性 -- 无缝集成在代码里,随时使用sql语句
  2. 统一数据访问方式 -- 一套标准api访问多种数据源
  3. 兼容hive -- 可以使用sparksql直接计算并生成hive数据表,这对老的hive数据仓的兼容还是比较好的
  4. 标准化连接,支持jdbc/odbc连接,方便和各种数据库进行数据交互

sparksql与hive的异同对比

  1. 都是分布式计算引擎,都广泛用于大规模结构化数据计算,但spark性能更佳
  2. sparksql底层允许sparkRDD,hive底层允许map-reduce, sparksql是基于内存迭代的,hive是基于磁盘迭代的,这也是他们性能差异的主要来源之一
  3. sparksql不支持元数据管理,hive有metastore管理元数据,但spark可以和hive集成,从而使用hive的元数据管理
  4. 二者都可以允许到yarn之上
  5. hive只支持sql开发,spark支持代码+sql融合开发

sparksql数据抽像与pandas、sparkcore对比

  1. pandas中,数据抽象单元是DataFrame,是一个二维表结构,用于单机/本地数据集合的处理
  2. sparkcore中,数据抽象是RDD,用于分布式数据集合,没有固定数据结构,可存储任意数据
  3. sparksql中,数据抽象是DataFrame,是一个二维表结构,与pandas不同的在于可以用于处理分布式数据集合
    实际上,sparksql有三种数据抽象,一个是早期的SchemaRDD抽象,现在已经废弃了,一个是DataSet数据抽象,主要是为scala/java提供的泛型数据对象支持,另外就是DataFrame,可支持python/java/scala。
    在spark中,RDD和sparksql是两个很常见的数据抽象形式,怎么理解这两种数据抽象,我们可以看下图:
  • RDD是可以存储任意结构数据了,上面只是假设数据对象是一个二维数据的结构,我们也可以用字符串(如"id,name,age")、类(三个成员)等存储,RDD存储对象本身,但dataframe不一样,只能按二维表存储;
  • RDD和DataFrame都可以进行分区处理,dataframe更适合用sql处理;
相关推荐
Yusei_05231 小时前
迅速掌握Git通用指令
大数据·git·elasticsearch
一只栖枝7 小时前
华为 HCIE 大数据认证中 Linux 命令行的运用及价值
大数据·linux·运维·华为·华为认证·hcie·it
喂完待续12 小时前
Apache Hudi:数据湖的实时革命
大数据·数据仓库·分布式·架构·apache·数据库架构
青云交12 小时前
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵治理与出行效率提升中的应用(398)
java·大数据·flink·大数据可视化·拥堵预测·城市交通治理·实时热力图
还是大剑师兰特18 小时前
Flink面试题及详细答案100道(1-20)- 基础概念与架构
大数据·flink·大剑师·flink面试题
1892280486121 小时前
NY243NY253美光固态闪存NY257NY260
大数据·网络·人工智能·缓存
武子康1 天前
大数据-70 Kafka 日志清理:删除、压缩及混合模式最佳实践
大数据·后端·kafka
CCF_NOI.1 天前
解锁聚变密码:从微观世界到能源新未来
大数据·人工智能·计算机·聚变
杨荧1 天前
基于Python的电影评论数据分析系统 Python+Django+Vue.js
大数据·前端·vue.js·python
数据智研1 天前
【数据分享】上市公司创新韧性数据(2007-2023)
大数据·人工智能