sparksql简介

什么是sparksql

sparksql是一个用来处理结构话数据的spark模块,它允许开发者便捷地使用sql语句的方式来处理数据;它是用来处理大规模结构化数据的分布式计算引擎,其他分布式计算引擎比较火的还有hive,map-reduce方式。

sparksql的特点

  1. 融合性 -- 无缝集成在代码里,随时使用sql语句
  2. 统一数据访问方式 -- 一套标准api访问多种数据源
  3. 兼容hive -- 可以使用sparksql直接计算并生成hive数据表,这对老的hive数据仓的兼容还是比较好的
  4. 标准化连接,支持jdbc/odbc连接,方便和各种数据库进行数据交互

sparksql与hive的异同对比

  1. 都是分布式计算引擎,都广泛用于大规模结构化数据计算,但spark性能更佳
  2. sparksql底层允许sparkRDD,hive底层允许map-reduce, sparksql是基于内存迭代的,hive是基于磁盘迭代的,这也是他们性能差异的主要来源之一
  3. sparksql不支持元数据管理,hive有metastore管理元数据,但spark可以和hive集成,从而使用hive的元数据管理
  4. 二者都可以允许到yarn之上
  5. hive只支持sql开发,spark支持代码+sql融合开发

sparksql数据抽像与pandas、sparkcore对比

  1. pandas中,数据抽象单元是DataFrame,是一个二维表结构,用于单机/本地数据集合的处理
  2. sparkcore中,数据抽象是RDD,用于分布式数据集合,没有固定数据结构,可存储任意数据
  3. sparksql中,数据抽象是DataFrame,是一个二维表结构,与pandas不同的在于可以用于处理分布式数据集合
    实际上,sparksql有三种数据抽象,一个是早期的SchemaRDD抽象,现在已经废弃了,一个是DataSet数据抽象,主要是为scala/java提供的泛型数据对象支持,另外就是DataFrame,可支持python/java/scala。
    在spark中,RDD和sparksql是两个很常见的数据抽象形式,怎么理解这两种数据抽象,我们可以看下图:
  • RDD是可以存储任意结构数据了,上面只是假设数据对象是一个二维数据的结构,我们也可以用字符串(如"id,name,age")、类(三个成员)等存储,RDD存储对象本身,但dataframe不一样,只能按二维表存储;
  • RDD和DataFrame都可以进行分区处理,dataframe更适合用sql处理;
相关推荐
忆~遂愿5 分钟前
CANN ATVOSS 算子库深度解析:基于 Ascend C 模板的 Vector 算子子程序化建模与融合优化机制
大数据·人工智能
艾莉丝努力练剑1 小时前
【Linux:文件】Ext系列文件系统(初阶)
大数据·linux·运维·服务器·c++·人工智能·算法
lili-felicity2 小时前
CANN异步推理实战:从Stream管理到流水线优化
大数据·人工智能
2501_933670793 小时前
2026 高职大数据专业考什么证书对就业有帮助?
大数据
xiaobaibai1533 小时前
营销自动化终极形态:AdAgent 自主闭环工作流全解析
大数据·人工智能·自动化
星辰_mya3 小时前
Elasticsearch更新了分词器之后
大数据·elasticsearch·搜索引擎
xiaobaibai1533 小时前
决策引擎深度拆解:AdAgent 用 CoT+RL 实现营销自主化决策
大数据·人工智能
悟纤3 小时前
学习与专注音乐流派 (Study & Focus Music):AI 音乐创作终极指南 | Suno高级篇 | 第33篇
大数据·人工智能·深度学习·学习·suno·suno api
ESBK20253 小时前
第四届移动互联网、云计算与信息安全国际会议(MICCIS 2026)二轮征稿启动,诚邀全球学者共赴学术盛宴
大数据·网络·物联网·网络安全·云计算·密码学·信息与通信
Elastic 中国社区官方博客3 小时前
Elasticsearch:Workflows 介绍 - 9.3
大数据·数据库·人工智能·elasticsearch·ai·全文检索