030—pandas 对数据透视并将多层索引整合为一列

使用步骤

读入数据

代码如下(示例):

python 复制代码
import pandas as pd
import random
guojia = ['中国','美国','英国','加拿大']
shuiguo = ['火龙果','西瓜','苹果','梨子']
nianfen = [2012,2014,2016,2015,2013]
df = pd.DataFrame({
    '国家': [random.choice(guojia) for i in range(10)],
    '水果': [random.choice(shuiguo) for i in range(10)],
    '年份': [random.choice(nianfen) for i in range(10)],
    '销量': [random.randrange(0,10) for i in range(10)]
})
df
python 复制代码
(
    df.pivot_table(values='销量', index='国家', columns=['年份','水果'])
    .map(lambda x: f'{x:.0f}')
    .replace('nan', '')
    .pipe(lambda x: x.set_axis([f'{a}({b})' for a,b in x.columns], axis=1))
    .reset_index()
)

总结

以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

相关推荐
敲代码不忘补水1 天前
Python Matplotlib 数据可视化全面解析:选择它的七大理由与入门简介
开发语言·python·信息可视化·numpy·pandas·matplotlib
滨HI02 天前
python中Pandas操作excel补全内容
python·excel·pandas
Leuanghing2 天前
使用Python生成卡方分布表并导出为Excel文件
python·excel·pandas·scipy·卡方分布表
敲代码不忘补水3 天前
pandas 机器学习数据预处理:从缺失值到特征切分的全面解析
人工智能·后端·python·机器学习·numpy·pandas·matplotlib
柯大侠爱喝水6 天前
python pandas ,处理csv文件、hdf5文件、parquet文件效率详细对比
python·pandas·csv·hdf5·parquet
阡之尘埃7 天前
Python自动化小技巧24——实现自动化输出模板表格报告
开发语言·python·数据分析·自动化·excel·pandas
神奇夜光杯8 天前
Python酷库之旅-第三方库Pandas(218)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
用一个不重复的昵称10 天前
python数据写入excel文件
python·excel·pandas
神奇夜光杯10 天前
Python酷库之旅-第三方库Pandas(211)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
神奇夜光杯11 天前
Python酷库之旅-第三方库Pandas(208)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长