030—pandas 对数据透视并将多层索引整合为一列

使用步骤

读入数据

代码如下(示例):

python 复制代码
import pandas as pd
import random
guojia = ['中国','美国','英国','加拿大']
shuiguo = ['火龙果','西瓜','苹果','梨子']
nianfen = [2012,2014,2016,2015,2013]
df = pd.DataFrame({
    '国家': [random.choice(guojia) for i in range(10)],
    '水果': [random.choice(shuiguo) for i in range(10)],
    '年份': [random.choice(nianfen) for i in range(10)],
    '销量': [random.randrange(0,10) for i in range(10)]
})
df
python 复制代码
(
    df.pivot_table(values='销量', index='国家', columns=['年份','水果'])
    .map(lambda x: f'{x:.0f}')
    .replace('nan', '')
    .pipe(lambda x: x.set_axis([f'{a}({b})' for a,b in x.columns], axis=1))
    .reset_index()
)

总结

以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

相关推荐
MoRanzhi12039 小时前
12. Pandas 数据合并与拼接(concat 与 merge)
数据库·人工智能·python·数学建模·矩阵·数据分析·pandas
MoRanzhi120318 小时前
11. Pandas 数据分类与区间分组(cut 与 qcut)
人工智能·python·机器学习·数学建模·分类·数据挖掘·pandas
MoRanzhi12034 天前
5. Pandas 缺失值与异常值处理
数据结构·python·数据挖掘·数据分析·pandas·缺失值处理·异常值处理
MoRanzhi12037 天前
2. Pandas 核心数据结构:Series 与 DataFrame
大数据·数据结构·人工智能·python·数据挖掘·数据分析·pandas
一百天成为python专家8 天前
【项目】自然语言处理——情感分析 <上>
人工智能·rnn·自然语言处理·数据分析·lstm·pandas·easyui
咬尾巴的猫在coding9 天前
pandas读取和写入excel
excel·pandas
清静诗意10 天前
Pandas 函数速查专业指南
python·数据分析·pandas
RE-190112 天前
制冷剂中表压对应温度值的获取(Selenium)
爬虫·python·selenium·jupyter·pandas·danfoss·reftools
cRack_cLick12 天前
pandas库学习02——基本数据清洗
python·pandas
半路_出家ren14 天前
python基础数据分析与可视化
python·数据分析·numpy·pandas·办公自动化·matplotlib·jupyternotebook