Keras库搭建神经网络

Keras并非简单的神经网络库,而是一个基于Theano的强大的深度学习库,利用它不仅仅可以搭建普通的神经网络,还可以搭建各种深度学习模型,如自编码器、循环神经网络、递归神经网络、卷积神经网络等。

安装代码:

python 复制代码
pip install keras

用Keras搭建神经网络模型的过程相当简洁,通过短短几十行代码就可以搭建起一个非常强大的神经网络模型,甚至是深度学习模型。简单搭建一个 MLP(多层感知器),如下:

python 复制代码
from keras.models import Sequential
from keras.layers.core import DenseDropout,Activation
from keras.optimizers import SGD
model=Sequential()#模型初始化
model.add(Dense(20,64))#添加输入层(20节点)、第一隐藏层(64节点)的连接
model.add(Activation('tanh'))#第一隐藏层用tanh作为激活函数
model.add(Dropout(0.5))#使用Dropout防止过拟合
model.add(Dense(64,64))#添加第一隐藏层(64节点)、第二隐藏层(64节点)的连接
model.add(ctivation('tanh'))#第二隐藏层用tanh作为激活函数
model.add(Dropout(0.5))#使用Dropout防止过拟合
model.add(Dense(64,1))#添加第二隐藏层(64节点)、输出层(1节点)的连接
model.add(Activation('sigmoid'))#输出层用sigmoid作为激活函数
sgd=SGD(lr=0.1,decay=1e-6,momentum=0.9,nesterov=True)#定义求解算法
model.compile(loss='mean squared error',optimizer=sgd) #编译生成模型,损失函数为平均误差平方和
model,fit(Xtrain,ytrain,nb_epoch=20,batch_size=16)#训练模型
score =model.evaluate(Xtest,ytest,batch_size=16)#测试模型

上述代码构建了一个具有两个隐藏层的神经网络模型,使用tanh和sigmoid作为激活函数,采用随机梯度下降优化器进行训练,并使用均方误差作为损失函数。最后对模型进行评估并输出评估得分。

相关推荐
Moshow郑锴1 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20252 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR3 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散133 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.8243 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945194 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火5 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴6 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR6 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢6 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网