Keras库搭建神经网络

Keras并非简单的神经网络库,而是一个基于Theano的强大的深度学习库,利用它不仅仅可以搭建普通的神经网络,还可以搭建各种深度学习模型,如自编码器、循环神经网络、递归神经网络、卷积神经网络等。

安装代码:

python 复制代码
pip install keras

用Keras搭建神经网络模型的过程相当简洁,通过短短几十行代码就可以搭建起一个非常强大的神经网络模型,甚至是深度学习模型。简单搭建一个 MLP(多层感知器),如下:

python 复制代码
from keras.models import Sequential
from keras.layers.core import DenseDropout,Activation
from keras.optimizers import SGD
model=Sequential()#模型初始化
model.add(Dense(20,64))#添加输入层(20节点)、第一隐藏层(64节点)的连接
model.add(Activation('tanh'))#第一隐藏层用tanh作为激活函数
model.add(Dropout(0.5))#使用Dropout防止过拟合
model.add(Dense(64,64))#添加第一隐藏层(64节点)、第二隐藏层(64节点)的连接
model.add(ctivation('tanh'))#第二隐藏层用tanh作为激活函数
model.add(Dropout(0.5))#使用Dropout防止过拟合
model.add(Dense(64,1))#添加第二隐藏层(64节点)、输出层(1节点)的连接
model.add(Activation('sigmoid'))#输出层用sigmoid作为激活函数
sgd=SGD(lr=0.1,decay=1e-6,momentum=0.9,nesterov=True)#定义求解算法
model.compile(loss='mean squared error',optimizer=sgd) #编译生成模型,损失函数为平均误差平方和
model,fit(Xtrain,ytrain,nb_epoch=20,batch_size=16)#训练模型
score =model.evaluate(Xtest,ytest,batch_size=16)#测试模型

上述代码构建了一个具有两个隐藏层的神经网络模型,使用tanh和sigmoid作为激活函数,采用随机梯度下降优化器进行训练,并使用均方误差作为损失函数。最后对模型进行评估并输出评估得分。

相关推荐
shao91851610 分钟前
Gradio全解11——Streaming:流式传输的视频应用(8)——Gemini Live API:实时音视频连接
人工智能·async·gemini·websockets·live api·servertoserver·clienttoserver
程序员小袁14 分钟前
LMDeploy 上线实战:零部署清单、QPS–显存估算表与 TurboMind vs vLLM 压测脚本全套指南
人工智能
pan0c2316 分钟前
机器学习 之 时间序列预测 的 电力负荷预测案例
人工智能·算法·机器学习
Sui_Network17 分钟前
GraphQL RPC 与通用索引器公测介绍:为 Sui 带来更强大的数据层
javascript·人工智能·后端·rpc·去中心化·区块链·graphql
武子康17 分钟前
AI-调查研究-75-具身智能 从LLM到LBM:大模型驱动下的机器人分层控制架构
人工智能·ai·职场和发展·架构·系统架构·机器人·具身智能
扑克中的黑桃A18 分钟前
AI对话高效输入指令攻略(三):使用大忌——“AI味”
人工智能
aneasystone本尊19 分钟前
详解 Chat2Graph 的工作流实现
人工智能
Monkey的自我迭代25 分钟前
opencv特征检测
人工智能·opencv·计算机视觉
六月的可乐35 分钟前
Vue3项目中集成AI对话功能的实战经验分享
前端·人工智能·openai
极造数字38 分钟前
MES系统在不同制造行业中的应用差异与共性
大数据·人工智能·物联网·信息可视化·制造