Keras库搭建神经网络

Keras并非简单的神经网络库,而是一个基于Theano的强大的深度学习库,利用它不仅仅可以搭建普通的神经网络,还可以搭建各种深度学习模型,如自编码器、循环神经网络、递归神经网络、卷积神经网络等。

安装代码:

python 复制代码
pip install keras

用Keras搭建神经网络模型的过程相当简洁,通过短短几十行代码就可以搭建起一个非常强大的神经网络模型,甚至是深度学习模型。简单搭建一个 MLP(多层感知器),如下:

python 复制代码
from keras.models import Sequential
from keras.layers.core import DenseDropout,Activation
from keras.optimizers import SGD
model=Sequential()#模型初始化
model.add(Dense(20,64))#添加输入层(20节点)、第一隐藏层(64节点)的连接
model.add(Activation('tanh'))#第一隐藏层用tanh作为激活函数
model.add(Dropout(0.5))#使用Dropout防止过拟合
model.add(Dense(64,64))#添加第一隐藏层(64节点)、第二隐藏层(64节点)的连接
model.add(ctivation('tanh'))#第二隐藏层用tanh作为激活函数
model.add(Dropout(0.5))#使用Dropout防止过拟合
model.add(Dense(64,1))#添加第二隐藏层(64节点)、输出层(1节点)的连接
model.add(Activation('sigmoid'))#输出层用sigmoid作为激活函数
sgd=SGD(lr=0.1,decay=1e-6,momentum=0.9,nesterov=True)#定义求解算法
model.compile(loss='mean squared error',optimizer=sgd) #编译生成模型,损失函数为平均误差平方和
model,fit(Xtrain,ytrain,nb_epoch=20,batch_size=16)#训练模型
score =model.evaluate(Xtest,ytest,batch_size=16)#测试模型

上述代码构建了一个具有两个隐藏层的神经网络模型,使用tanh和sigmoid作为激活函数,采用随机梯度下降优化器进行训练,并使用均方误差作为损失函数。最后对模型进行评估并输出评估得分。

相关推荐
GOSIM 全球开源创新汇20 小时前
科班出身+跨界双轨:陈郑豪用 AI 压缩技术,让 4K 游戏走进普通设备|Open AGI Forum
人工智能·游戏·agi
sinat_2869451920 小时前
AI Coding LSP
人工智能·算法·prompt·transformer
IT_陈寒20 小时前
Java并发编程实战:从入门到精通的5个关键技巧,让我薪资涨了40%
前端·人工智能·后端
码上宝藏21 小时前
ComfyUI新插件上线!多模态多视角生成,中文场景适配拉满——手把手教你玩转ComfyUI-qwenmultiangle
人工智能·comfyui
故乡de云21 小时前
Google Cloud与AWS大数据AI服务对比:2026年企业选型指南
大数据·人工智能·aws
●VON21 小时前
可信 AI 认证:从技术承诺到制度信任
人工智能·学习·安全·制造·von
AI架构师易筋21 小时前
AIOps 告警归因中的提示工程:从能用到可上生产(4 阶梯)
开发语言·人工智能·llm·aiops·rag
数说星榆18121 小时前
在线高清泳道图制作工具 无水印 PC
大数据·人工智能·架构·机器人·流程图
说私域21 小时前
B站内容生态下的私域流量运营创新:基于AI智能名片链动2+1模式与S2B2C商城小程序的融合实践
人工智能·小程序·流量运营
特立独行的猫a21 小时前
告别写作焦虑:用 n8n + AI 打造“输入即发布”的自驱动写作工作流
人工智能·工作流·n8n