深度学习pytorch——拼接与拆分(持续更新)

cat拼接

使用条件:合并的dim的size可以不同,但是其它的dim的size必须相同。

语法:cat([tensor1,tensor2],dim = n) # 将tensor1和tensor2的第n个维度合并

代码演示:

python 复制代码
# 拼接与拆分
a = torch.rand(4,32,8)
b = torch.rand(5,32,8)
print(torch.cat([a,b],dim=0).shape)     # torch.Size([9, 32, 8])

stack拼接

为什么要使用stack?下面会举个例子阐述一下原因:

A [32, 8] # 一个班,一共有32个同学,每个同学有8门成绩

B [32, 8] # 一个班,一共有32个同学,每个同学有8门成绩

cat:[64, 8] # 一个班,一共有64个同学,每个同学有8门成绩,不符合实际

stack: [2, 32, 8] # 2个班,每个班有32个同学,每个同学有8门成绩,符合实际

使用条件:A.shape = B.shape

代码演示:

python 复制代码
a = torch.rand(32,8)
b = torch.rand(32,8)
print(torch.cat([a,b],dim=0).shape)     # torch.Size([64, 8])
print(torch.stack([a,b],dim=0).shape)   # torch.Size([2, 32, 8])

split------根据长度拆分

语法:split(len, dim = n) # 在第n个维度拆分,每个size=len

代码演示:

python 复制代码
# c.shape = torch.Size([2, 32, 8])
aa, bb = c.split(1,dim=0)
print(aa.shape,bb.shape)                # torch.Size([1, 32, 8]) torch.Size([1, 32, 8])

注意:不要超过第0维的总体长度2,等于也不行,别忘了split进行的是拆分。

chunk------根据数量拆分

语法:chunk(num, dim = n) # 在第n维进行拆分,拆分为num份

代码演示:

python 复制代码
# c.shape = torch.Size([2, 32, 8])
aa, bb = c.chunk(2,dim = 0)
print(aa.shape,bb.shape)                # torch.Size([1, 32, 8]) torch.Size([1, 32, 8])
相关推荐
居7然36 分钟前
解锁AI大模型:Prompt工程全面解析
人工智能·prompt·提示词
思通数据5 小时前
AI视频监控:重构安防行业智能化新生态
人工智能·安全·目标检测·机器学习·计算机视觉·重构·数据挖掘
萤丰信息5 小时前
智慧工地从工具叠加到全要素重构的核心引擎
java·大数据·人工智能·重构·智慧城市·智慧工地
riveting5 小时前
明远智睿SSD2351:以技术突破重构嵌入式市场格局
大数据·人工智能·重构·边缘计算·嵌入式开发·智能交通
计算机sci论文精选6 小时前
CVPR2025敲门砖丨机器人结合多模态+时空Transformer直冲高分,让你的论文不再灌水
人工智能·科技·深度学习·机器人·transformer·cvpr
XIAO·宝6 小时前
机器学习----绪论
人工智能·机器学习
41号学员6 小时前
机器学习绪论
人工智能·机器学习
华清远见成都中心6 小时前
基于深度学习的异常检测算法在时间序列数据中的应用
人工智能·深度学习·算法
一车小面包8 小时前
机器学习中数据集的划分难点及实现
人工智能·深度学习·机器学习
R-G-B9 小时前
【P27 4-8】OpenCV Python——Mat类、深拷贝(clone、copyTo、copy)、浅拷贝,原理讲解与示例代码
人工智能·python·opencv·浅拷贝·深拷贝·opencv python·mat类