深度学习pytorch——拼接与拆分(持续更新)

cat拼接

使用条件:合并的dim的size可以不同,但是其它的dim的size必须相同。

语法:cat([tensor1,tensor2],dim = n) # 将tensor1和tensor2的第n个维度合并

代码演示:

python 复制代码
# 拼接与拆分
a = torch.rand(4,32,8)
b = torch.rand(5,32,8)
print(torch.cat([a,b],dim=0).shape)     # torch.Size([9, 32, 8])

stack拼接

为什么要使用stack?下面会举个例子阐述一下原因:

A [32, 8] # 一个班,一共有32个同学,每个同学有8门成绩

B [32, 8] # 一个班,一共有32个同学,每个同学有8门成绩

cat:[64, 8] # 一个班,一共有64个同学,每个同学有8门成绩,不符合实际

stack: [2, 32, 8] # 2个班,每个班有32个同学,每个同学有8门成绩,符合实际

使用条件:A.shape = B.shape

代码演示:

python 复制代码
a = torch.rand(32,8)
b = torch.rand(32,8)
print(torch.cat([a,b],dim=0).shape)     # torch.Size([64, 8])
print(torch.stack([a,b],dim=0).shape)   # torch.Size([2, 32, 8])

split------根据长度拆分

语法:split(len, dim = n) # 在第n个维度拆分,每个size=len

代码演示:

python 复制代码
# c.shape = torch.Size([2, 32, 8])
aa, bb = c.split(1,dim=0)
print(aa.shape,bb.shape)                # torch.Size([1, 32, 8]) torch.Size([1, 32, 8])

注意:不要超过第0维的总体长度2,等于也不行,别忘了split进行的是拆分。

chunk------根据数量拆分

语法:chunk(num, dim = n) # 在第n维进行拆分,拆分为num份

代码演示:

python 复制代码
# c.shape = torch.Size([2, 32, 8])
aa, bb = c.chunk(2,dim = 0)
print(aa.shape,bb.shape)                # torch.Size([1, 32, 8]) torch.Size([1, 32, 8])
相关推荐
网络安全研究所15 小时前
AI安全提示词注入攻击如何操控你的智能助手?
人工智能·安全
数据猿15 小时前
硬盘价格涨疯了,AI存储何去何从?
人工智能
zhangfeng113315 小时前
氨基酸序列表示法,蛋白质序列表达 计算机中机器学习 大语言模型中的表达,为什么没有糖蛋白或者其他基团磷酸化甲基化乙酰化泛素化
人工智能·机器学习·语言模型
陈天伟教授15 小时前
人工智能应用- 语言理解:06.大语言模型
人工智能·语言模型·自然语言处理
海心焱16 小时前
安全之盾:深度解析 MCP 如何缝合企业级 SSO 身份验证体系,构建可信 AI 数据通道
人工智能·安全
2501_9453184916 小时前
AI证书能否作为招聘/培训标准?2026最新
人工智能
2601_9491465316 小时前
Python语音通知接口接入教程:开发者快速集成AI语音API的脚本实现
人工智能·python·语音识别
韦东东16 小时前
RAGFlow v0.20的Agent重大更新:text2sql的Agent案例测试
人工智能·大模型·agent·text2sql·ragflow
人工智能AI技术16 小时前
DeepSeek-OCR 2实战:让AI像人一样“看懂”复杂文档
人工智能
OpenBayes16 小时前
教程上新|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
人工智能·深度学习·目标检测·机器学习·大模型·ocr·gpu算力