深度学习pytorch——拼接与拆分(持续更新)

cat拼接

使用条件:合并的dim的size可以不同,但是其它的dim的size必须相同。

语法:cat([tensor1,tensor2],dim = n) # 将tensor1和tensor2的第n个维度合并

代码演示:

python 复制代码
# 拼接与拆分
a = torch.rand(4,32,8)
b = torch.rand(5,32,8)
print(torch.cat([a,b],dim=0).shape)     # torch.Size([9, 32, 8])

stack拼接

为什么要使用stack?下面会举个例子阐述一下原因:

A [32, 8] # 一个班,一共有32个同学,每个同学有8门成绩

B [32, 8] # 一个班,一共有32个同学,每个同学有8门成绩

cat:[64, 8] # 一个班,一共有64个同学,每个同学有8门成绩,不符合实际

stack: [2, 32, 8] # 2个班,每个班有32个同学,每个同学有8门成绩,符合实际

使用条件:A.shape = B.shape

代码演示:

python 复制代码
a = torch.rand(32,8)
b = torch.rand(32,8)
print(torch.cat([a,b],dim=0).shape)     # torch.Size([64, 8])
print(torch.stack([a,b],dim=0).shape)   # torch.Size([2, 32, 8])

split------根据长度拆分

语法:split(len, dim = n) # 在第n个维度拆分,每个size=len

代码演示:

python 复制代码
# c.shape = torch.Size([2, 32, 8])
aa, bb = c.split(1,dim=0)
print(aa.shape,bb.shape)                # torch.Size([1, 32, 8]) torch.Size([1, 32, 8])

注意:不要超过第0维的总体长度2,等于也不行,别忘了split进行的是拆分。

chunk------根据数量拆分

语法:chunk(num, dim = n) # 在第n维进行拆分,拆分为num份

代码演示:

python 复制代码
# c.shape = torch.Size([2, 32, 8])
aa, bb = c.chunk(2,dim = 0)
print(aa.shape,bb.shape)                # torch.Size([1, 32, 8]) torch.Size([1, 32, 8])
相关推荐
卡奥斯开源社区官方4 分钟前
深度拆解:Clawdbot“集体永生”技术内核,是AI协同突破还是营销噱头?
人工智能
小W与影刀RPA7 分钟前
【影刀 RPA】 :文档敏感词批量替换,省时省力又高效
人工智能·python·低代码·自动化·rpa·影刀rpa
小咖自动剪辑20 分钟前
12306余票监控辅助工具详解:自动查询/多方案预约/到点提交
人工智能
得赢科技24 分钟前
智能菜谱研发公司推荐 适配中小型餐饮
大数据·运维·人工智能
victory043140 分钟前
Gradio实现中英文切换,不影响页面状态,不得刷新页面情况下
人工智能
微光闪现1 小时前
践行“科技向善”,微乐播捐赠108,888元助力唇腭裂儿童绽放笑容
人工智能
闵帆1 小时前
反演学习器面临的鸿沟
人工智能·学习·机器学习
feasibility.1 小时前
多模态模型Qwen3-VL在Llama-Factory中断LoRA微调训练+测试+导出+部署全流程--以具身智能数据集open-eqa为例
人工智能·python·大模型·nlp·llama·多模态·具身智能
CDA数据分析师干货分享1 小时前
【干货】CDA一级知识点拆解1:《CDA一级商业数据分析》第1章 数据分析思维
数据库·人工智能·数据分析·cda证书·cda数据分析师
梦梦代码精1 小时前
开源、免费、可商用:BuildingAI一站式体验报告
开发语言·前端·数据结构·人工智能·后端·开源·知识图谱