深度学习pytorch——拼接与拆分(持续更新)

cat拼接

使用条件:合并的dim的size可以不同,但是其它的dim的size必须相同。

语法:cat([tensor1,tensor2],dim = n) # 将tensor1和tensor2的第n个维度合并

代码演示:

python 复制代码
# 拼接与拆分
a = torch.rand(4,32,8)
b = torch.rand(5,32,8)
print(torch.cat([a,b],dim=0).shape)     # torch.Size([9, 32, 8])

stack拼接

为什么要使用stack?下面会举个例子阐述一下原因:

A [32, 8] # 一个班,一共有32个同学,每个同学有8门成绩

B [32, 8] # 一个班,一共有32个同学,每个同学有8门成绩

cat:[64, 8] # 一个班,一共有64个同学,每个同学有8门成绩,不符合实际

stack: [2, 32, 8] # 2个班,每个班有32个同学,每个同学有8门成绩,符合实际

使用条件:A.shape = B.shape

代码演示:

python 复制代码
a = torch.rand(32,8)
b = torch.rand(32,8)
print(torch.cat([a,b],dim=0).shape)     # torch.Size([64, 8])
print(torch.stack([a,b],dim=0).shape)   # torch.Size([2, 32, 8])

split------根据长度拆分

语法:split(len, dim = n) # 在第n个维度拆分,每个size=len

代码演示:

python 复制代码
# c.shape = torch.Size([2, 32, 8])
aa, bb = c.split(1,dim=0)
print(aa.shape,bb.shape)                # torch.Size([1, 32, 8]) torch.Size([1, 32, 8])

注意:不要超过第0维的总体长度2,等于也不行,别忘了split进行的是拆分。

chunk------根据数量拆分

语法:chunk(num, dim = n) # 在第n维进行拆分,拆分为num份

代码演示:

python 复制代码
# c.shape = torch.Size([2, 32, 8])
aa, bb = c.chunk(2,dim = 0)
print(aa.shape,bb.shape)                # torch.Size([1, 32, 8]) torch.Size([1, 32, 8])
相关推荐
XIAO·宝4 分钟前
深度学习------YOLOV1和YOLOV2
人工智能·深度学习·yolo
Jing_jing_X16 分钟前
微信小程序开发踩坑记:从AI工具翻车到找到合适方案
人工智能·ai·小程序·产品运营·个人开发
Antonio91522 分钟前
【图像处理】图片的前向映射与后向映射
图像处理·人工智能·计算机视觉
工藤学编程1 小时前
零基础学AI大模型之RAG技术
人工智能
安替-AnTi1 小时前
PandaWiki:AI 驱动的开源知识库系
人工智能·embedding·检索增强·知识库·rag·查询优化
迦蓝叶1 小时前
JAiRouter v1.0.0 正式发布:企业级 AI 服务网关的开源解决方案
java·运维·人工智能·网关·spring·ai·开源
长空任鸟飞_阿康1 小时前
Node.js 核心模块详解:fs 模块原理与应用
前端·人工智能·ai·node.js
可触的未来,发芽的智生2 小时前
触摸未来2025-10-18:生成文字的小宇宙矩阵溯源
人工智能·python·神经网络·程序人生·自然语言处理
武子康2 小时前
AI-调查研究-106-具身智能 机器人学习数据采集工具和手段:传感器、API、遥操作、仿真与真人示教全流程
人工智能·深度学习·机器学习·ai·系统架构·机器人·具身智能
Python智慧行囊2 小时前
图像处理-opencv(一)
人工智能·opencv·计算机视觉