2024 年(第 12 届)“泰迪杯”数据挖掘挑战赛—— C 题:竞赛论文的辅助自动评阅完整思路与源代码分享

一、问题背景
近年来我国各领域各层次学科竞赛百花齐放,层出不穷,学生参与度也越来越高。随着参赛队伍的增 加,评阅论文的工作量急剧增加,这对评阅论文的人力要求也越来越大。因此引入机器辅助评阅成为竞赛主办方的现实需求。 在学术界,建立基于 AI 的学术论文自动评审模型已得到了许多研究者的关注。论文的自动评阅涉及多 种传统的自然语言处理技术如文本分类、信息抽取、论辩挖掘等。近年来,随着深度学习和自然语言处理技术的不断发展,特别是以 GPT 为代表的大语言模型的出现,进一步促进了论文自动评阅技术的发展,使得利用 AI 进行文本的自动评阅变得越来越可行,逐步从实验室走向学校和更多组织机构,成为当前的技术热点。但是在特定领域实现论文自动评阅仍然存在很多挑战,需要利用预训练的大语言模型适配具体的应用场景 来解决问题。

二、解决问题

1、构造论文质量特征

每个指标的分数范围为 0-10 分。

(1)论文的完整性评价

对照赛题,比对竞赛论文中相关问题的章节或段落,对论文的完整性进行评价。评估竞赛论文是否能完整解答赛题,并给出评价论文完整性的技术手段和评分标准。

(2)论文有无实质性工作

对照赛题评阅要点,查找竞赛论文中相关问题的章节或段落,考察论文是否就赛题问题做出了相关的研究。需给出相关的技术方法和评价标准。

(3)摘要质量

摘要与内容的一致性评价。评价摘要是否如实反映正文的中心思想,即衡量内容摘要与正文的相关性、一致性。需给出摘要质量评价指标及其依据。

(4)写作水平评价

评价文字流畅性、写作规范(图、表、摘要)性和论文逻辑性。在传统论文评分(essay scoring)技术基础上,从文本通顺、立意分析、篇章结构、论证挖掘等维度进行探索,挖掘文本蕴含的论点论据、论证关系、结构信息,结合论证挖掘角度评估论文一致性、逻辑性,综合给出论文写作水平的评分。(完整附件见文末!)

  1. 数据预处理:首先,我们需要从PDF文件中提取出每篇论文的文本内容。
  2. 建立问题模板:针对每个要评估的指标(完整性、实质性工作、摘要质量、写作水平),我们需要设计适当的问题模板,确保向ChatGPT提出的问题能够得到有意义的回答。问题模板应该具有明确的语义,以便ChatGPT理解并给出相关的回复。
  3. 调用ChatGPT接口:利用建立的问题模板,我们向ChatGPT接口发送请求,将论文内容作为输入,并期待ChatGPT生成针对每个问题的回答。我们可以设置合适的参数来确保生成的回答质量和相关性。
  4. 解析回答结果:得到ChatGPT生成的回答后,我们需要解析这些结果,并将其转化为数值化的评分。这可能涉及到自然语言处理技术,例如情感分析、语义理解等,以确保对回答的准确解读。
  5. 综合评估:在对每个指标进行评估后,我们需要将各个指标的评分综合起来,得到每篇论文的综合评分。这一步可以根据不同指标的重要性进行加权处理,以确保综合评分更加准确地反映论文的整体质量。

结果:

2、竞赛论文辅助评分

根据上面构造的各项评分指标建立论文的整体评分模型,根据提供的论文集,按照十分制给出每篇论文的综合评分,将结果保存到 result.xlsx 文件中。综合评分结果要求满足如下限制条件:8-10 分的不超过 3%;6-7 分的不少于 10%,6-10 分不超过 15%;4-5 分不少于 20%,4-10 分不超过 35%;其他的为 0-3 分。一般而言,在综合评分中论文的完整性和写作水平的分数占比之和不超过 40%。(完整附件见文末!)

1.计算每篇论文的综合评分:

对每篇论文进行完整性、实质性工作、摘要质量和写作水平等方面的评分,可以利用之前构造的评分函数来完成。

根据评分指标的重要性,可以为每个评分指标设置合适的权重,然后对各项评分进行加权求和,得到每篇论文的综合评分。

2.根据评分要求进行限制:

根据给定的评分要求,确定各个评分区间的数量限制,例如8-10分的不超过3%,6-7分的不少于10%,以及4-5分的不少于20%等。

遍历每篇论文的综合评分,根据评分要求对评分进行调整,确保满足数量限制。

3.检查评分结果:

检查所得的评分结果,确保满足了给定的评分要求,并且符合预期的逻辑。

附件:

相关推荐
成富42 分钟前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
CSDN云计算1 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森1 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11231 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子1 小时前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing1 小时前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗2 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
2 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
ctrey_2 小时前
2024-11-4 学习人工智能的Day21 openCV(3)
人工智能·opencv·学习
攻城狮_Dream2 小时前
“探索未来医疗:生成式人工智能在医疗领域的革命性应用“
人工智能·设计·医疗·毕业