目录
[1. 数据类型介绍](#1. 数据类型介绍)
[1.1 类型的基本归类:](#1.1 类型的基本归类:)
[2. 整形在内存中的存储](#2. 整形在内存中的存储)
[2.1 原码、反码、补码](#2.1 原码、反码、补码)
[2.2 大小端介绍](#2.2 大小端介绍)
[3. 浮点型在内存中的存储](#3. 浮点型在内存中的存储)
1. 数据类型介绍
前面我们已经学习了基本的内置类型:
char //字符数据类型
short //短整型
int //整形
long //长整型
long long //更长的整形
float //单精度浮点数
double //双精度浮点数
以及他们所占存储空间的大小。
类型的意义:
-
使用这个类型开辟内存空间的大小(大小决定了使用范围)。
-
如何看待内存空间的视角。
1.1 类型的基本归类:
整形家族:
char
unsigned char
signed char
short
unsigned short [int]
signed short [int]
int
unsigned int
signed int
long
unsigned long [int]
signed long [int]
浮点数家族:
float
double
构造类型 :
> 数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union
指针类型 :
int *pi;
char *pc;
float* pf;
void* pv;
空类型:
void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型。
2. 整形在内存中的存储
我们之前讲过一个变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。
那接下来我们谈谈数据在所开辟内存中到底是如何存储的?
比如:
int a = 20;
int b = -10;
我们知道为 a 分配四个字节的空间。
那如何存储?
下来了解下面的概念:
2.1 原码、反码、补码
计算机中的整数有三种2进制表示方法,即原码、反码和补码。
三种表示方法均有符号位和数值位两部分,符号位都是用0表示"正",用1表示"负",而数值位
正数的原、反、补码都相同。
负整数的三种表示方法各不相同。
原码
直接将数值按照正负数的形式翻译成二进制就可以得到原码。
反码
将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码
反码+1就得到补码。
对于整形来说:数据存放内存中其实存放的是补码。
为什么呢?
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统
一处理;
同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程
是相同的,不需要额外的硬件电路。
2.2 大小端介绍
什么大端小端:
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址
中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地
址中。
为什么有大端和小端
为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元
都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short
型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32
位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因
此就导致了大端存储模式和小端存储模式。
例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为
高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高
地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则
为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式
还是小端模式。
百度2015年系统工程师笔试题:
请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。(10分)
//代码1
#include <stdio.h>
int check_sys()
{
int i = 1;
return (*(char *)&i);
}
int main()
{
int ret = check_sys();
if(ret == 1)
{
printf("小端\n");
}
else
{
printf("大端\n");
}
return 0;
}
//代码2
int check_sys()
{
union
{
int i;
char c;
}un;
un.i = 1;
return un.c;
}
3. 浮点型在内存中的存储